Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
Bài 2 :
b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)
ĐKXĐ : \(x\ge1\)
Pt(1) tương đương :
\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)
Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)
\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)
Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\) ( Thỏa mãn )
Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)
Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :
\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\Leftrightarrow2=2\) ( Luôn đúng )
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)
Bài 1 :
a) ĐKXĐ : \(-1\le a\le1\)
Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)
\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)
\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)
\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)
Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)
b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :
\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)
Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)
a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
b)\(S=A\cdot B\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)
\(=1+\frac{1}{\sqrt{x}+2}\)
Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\) đạt GTLN
\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN
GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)
Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)
ai trả lời họ vơi