Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
hình tự vẽ bn nha a) ta có:tam giác abc vuông tại a => bac = 90 xét tam giác abc có: abc + acb + cab = 180(t/c) mà bac = 90(cmt) ; acb = 36(gt) => 90 +36 + abc = 180 126 + abc = 180 abc= 54
b) ta có: abd = ebd ( vì bd là phân giác của abc) xét tam giác abd và tam giác ebd có: ba=be(gt) ; abd=ebd(cmt) : chung cạnh bd => tam giác abd = tam giác ebd ( c.g.c) (đpcm)
c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b tam giác abc vuông tại a(gt) => ab vuông góc với ac ta có: xy vuông góc với ab (gt) ab vuông góc với ac(cmt) => xy song song với ac(t/c) => bak = abd ( so le trong) xét tam giác abk vuông tại b và tam giác bad vuông tại a có: bak=abd(cmt) ; chung cạnh ba => tam giác abk= tam giác abd ( cgv-gnk) => ak=bd(2 cạnh tương ứng)
a)Xét tam giác AHB và tam giác AHE ( đều vuông tại H )
AH là cạnh chung
\(\widehat{BAH}=\widehat{HAE}\)(Vì AD là tia phân giác)
\(\Rightarrow\Delta AHB=\Delta AHE\)(cạnh góc vuông và góc nhọn kề cạnh ấy)
b)Vì AH vừa là tia phân giác vừa là tia vuông góc
\(\Rightarrow\Delta ABE\) là tam giác cân mà lại có góc BAE bằng 600
\(\Rightarrow\Delta ABE\) là tam giác đều\(\Rightarrow\)AH cũng là đường trung tuyến \(\Rightarrow\)BH=HE(1)
Vì KH//AB\(\Rightarrow\widehat{BAE}=\widehat{HKE};\widehat{KHE}=\widehat{ABE}\)
Mà góc KEH chung
\(\Rightarrow\Delta KHE\) là tam giác đều
\(\Rightarrow KH=HE\left(2\right)\)
Từ (1) và (2) suy ra:KH=HB=HE
Theo định lý nếu trong tam giác cạnh đối diện với cạnh huyền bằng nửa cạnh huyền thì tam giác đó vuông
\(\Rightarrow\Delta BKE\) vuông tại K
\(\Rightarrow\widehat{BKE}=90^0\)