Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHBM có
E là trung điểm chung của AB và HM
nên AHBM là hình bình hành
=>AM//BH và AM=BH
=>AM//BC
Xét tứ giác AHCN có
D là trung điểm chung của AC và HN
nên AHCN là hình bình hành
=>AN//CH và AN=CH
=>AN//BC
=>M,A,N thẳng hàng
b: Ta có: ΔAHB vuông tại H
mà HE là đường trung tuyến
nên HE=1/2BA
Ta có: ΔAHC vuông tại H
mà HD là đường trung tuyến
nên HD=AC/2
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 1:
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC
Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(
a) Xét △AHB và △AHC có:
AHB = AHC (= 90o)
AH: chung
AB = AC (△ABC cân)
=> △AHB = △AHC (ch-cgv)
b) Xét △ADM và △ADH có:
ADM = ADH (= 90o)
DM = DH (gt)
AD: chung
=> △ADM = △ADH (2cgv)
=> AM = AH (2 cạnh tương ứng) (1)
Xét △ANE và △AHE có:
AEH = AEN (= 90o)
EH = EN (gt)
AE: chung
=> △ANE = △AHE (2cgv)
=> AN = AH (hai cạnh tương ứng) (2)
Từ (1) và (2) => AM = AN => △AMN cân tại A
Ta có: MAN = MAB + BAH + HAC + CAN
Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)
=> MAN = 2BAH + 2 HAC
=> MAN = 2BAC
=> BAC = 1/2MAN
c) Ta có: HAD = HAE (△AHB = △AHC)
Mà HAD = DAM, HAE = EAN
=> HAD + DAM = HAE + EAN
=> HAM = HAN
Gọi giao điểm AH và MN là F
Xét △AFM và △AFN có:
AF: chung
FAM = FAN (cmt)
AM = AN (cmt)
=> △AFM = △AFN (c.g.c)
=> AFM = AFN (2 góc tương ứng)
Mà AFM + AFN = 180o => AFM = AFN = 90o
=> AH vuông góc MN (1)
Gọi giao điểm của DE và AH là I
Xét △ADH và △AEH có:
ADH = AEH (= 90o)
AH: chung
HAD = HAE (△HAB = △HAC)
=> △ADH = △AEH (ch-gn)
=> AD = AE (2 cạnh tương ứng)
Xét △AID và △AIE có:
AI: chung
IAD = IAE (cmt)
AD = AE (cmt)
=> △AID = △AIE (c.g.c)
=> AID = AIE (2 góc tương ứng)
Mà AID + AIE = 180o => AID = AIE = 90o
=> AH vuông góc DE (2)
Từ (1) và (2) => MN // DE
d) \(\Delta\)ABC cân tại A có AH là đường cao
=> AH là đường trung tuyến
=> H là trung điểm BC
=> BH = HC = BC : 2 = 3 ( cm )
\(\Delta\)ABH vuông tại H => AB2 - BH2 = AH2 => AH = 4 cm
=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB
=> 3.4 = HD . 5 => HD = 2,4 cm
\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD2 = 3,24 => BD = 1,8 cm
Xét t/g AOB &t/g KOC, ta có:
OC=OB( O là TĐ của BC)
\(\widehat{AOB}\)=\(\widehat{KOC}\)
OA=OK(gt)
=> \(\Delta AOB=\Delta KOC\)(c-g-c)
=> AB= CK(2 cạnh t/ứ)
\(\widehat{BAO}\)=\(\widehat{CKO}\)(2gocs t/ứ)
mà chúng ở vị trí SLT
=>\(AB//Ck\)
Ta có:
\(AB\perp AC\)(\(\Delta ABC\)vuông tại A)
\(AB//CK\)
=> \(AC\perp Ck\)
=> \(\widehat{KCA}=\widehat{BAC}\left(=90^0\right)\)
Xét t/g vuông ABC &t/g vuông CKA, ta có:
AB=CK
AC chung
=> t/g vuông ABC= t/g vuông CKA(2cgv)