K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ABDˆ=900,ABD^=900 và ACDˆ=900ACD^=900

⇔ABDˆ=ACDˆ⇔ABD^=ACD^

⇒ABCˆ+CBDˆ=ACBˆ+BCDˆ⇒ABC^+CBD^=ACB^+BCD^

Mà ABCˆ=ACBˆABC^=ACB^ (Tam giác ABC cân tại A)

⇔CBDˆ=BCDˆ⇔CBD^=BCD^

⇔ΔBCD⇔ΔBCD cân tại D

b) Xét tam giác ABD và tam giác ACD, có:

AB=ACAB=AC (Tam giác ABC cân tại A)

BD=CD (Tam giác BCD cân tại D)

ABDˆ=ACDˆ=900

⇔ΔABD=ΔACD (Hai cạnh góc vuông)

⇔BADˆ=CADˆ(Hai cạnh tương ứng)

=> AD là tia phân giác góc A

Lại có: ADBˆ=ADCˆ (ΔABD=ΔACD)

=> DA là tia phân giác góc D

Học tốt

https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A.+Qua+B+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AB,+qua+C+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC,+ch%C3%BAng+c%E1%BA%AFt+nhau+%E1%BB%9F+D.+Ch%E1%BB%A9ng+minh:++a.+Tam+gi%C3%A1c+BDC+c%C3%A2n.+++b.+AB+l%C3%A0+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+A+++++++DA+l%C3%A0+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+D++c.+AD+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC+v%C3%A0+AD+%C4%91i+qua+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+BC.&id=558420  

bạn tham khảo nhé

6 tháng 2 2017

  tam giác ABD=ACD(ch.cgv)

=>góc BAD=góc CAD(2 góc tương ứng)

vậy ad phan giac bac

6 tháng 2 2017

A B C D wwwwww

19 tháng 2 2020

xét tam giác BAD và tam giác CAD có : AD chung

góc ABD = góc ACD = 90 

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác BAD = tam giác CAD (ch-cgv)

=> góc BAD = góc CAD mà AD nằm giữa AB và AC 

=> AD là phân giác của góc ABC (đn)

19 tháng 2 2020

vẽ hình hộ mik với

11 tháng 1 2020

A B C _ _ D

Ta có:

ABD=ABC+CBD

ACD=ACB+BCD

Mà ABD=ACD (=90o)

      ABC=ACB (\(\Delta\)ABC cân)

\(\Rightarrow\)CBD=BCD

\(\Rightarrow\Delta\)BDC cân

Xét \(\Delta\)ABD và \(\Delta\) ACD có:

AB=AC (\(\Delta\)ABC cân)

AD: chung

BD=CD (\(\Delta\)BDC cân)

\(\Rightarrow\Delta\)ABD=\(\Delta\)ACD (c.c.c)

\(\Rightarrow\)BAD=CAD (2 góc tương ứng)

\(\Rightarrow\)AD là p/g BAC (đpcm)

12 tháng 1 2020

Ta có tam giác ABC la tam giác cân tại A

=> AB = AC ( tính chất tam giác cân ) 

Xét tam giác ABD vuông tại B và tam giác ACD vuông tại C có :                                                                                                                

AB = Ac ( cmt )                                                                                                                                                                                                                        

Ad là cah chung

=> tam giác ABD = tam giác ACD ( ch -cgv )

=> Góc A= góc A2 ( hai góc tương ứng )

=> AD là tia phân giác góc A

GIÚP MÌNH  NHÉ MỌI NGƯỜI, BÀI NÀO BIẾT GIÚP MÌNH TRƯỚC CŨNG ĐƯỢC. CẢM ƠN RẤT NHIỀU!!! :"3Bài 1: cho tam giác ABC có góc A tù. Ở miền ngoài tam giác vẽ tam giác vuông cân BAD, CAE, ( đỉnh A). Đường cao AH cắt DE tại M. Chứng minh MD=MEBài 2: cho tam giác ABC, góc BAC = 120độ, đường phân giác trong AD. Từ D hạ DE vuông góc AB, DF vuông góc AC.a) Hãy cho nhận xét về tam giác DEFb) qua C vẽ đường thẳng song...
Đọc tiếp

GIÚP MÌNH  NHÉ MỌI NGƯỜI, BÀI NÀO BIẾT GIÚP MÌNH TRƯỚC CŨNG ĐƯỢC. CẢM ƠN RẤT NHIỀU!!! :"3

Bài 1: cho tam giác ABC có góc A tù. Ở miền ngoài tam giác vẽ tam giác vuông cân BAD, CAE, ( đỉnh A). Đường cao AH cắt DE tại M. Chứng minh MD=ME

Bài 2: cho tam giác ABC, góc BAC = 120độ, đường phân giác trong AD. Từ D hạ DE vuông góc AB, DF vuông góc AC.

a) Hãy cho nhận xét về tam giác DEF

b) qua C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Hãy cho nhận xét về tam giác ACM

c) Cho biết CM=a,CF=b. Tính AD (a>b)

Bài 3: cho tam giác ABC. Trên nửa mặt phẳng không chứa tia AC có bờ là đường thẳng AB, người ta vẽ AD vuông góc AB và AD=AB. Trên nửa mặt phẳng không chứa tia AB có bờ là đường thẳng AC, vẽ AE vuông góc góc AC và AE=AC. Gọi P,Q,M theo thứ tự là trung điểm của BD,CE và BC. Chứng minh rằng:

a) BE=CD và BE vuông góc CD

b) PQM là tam giác vuông cân

bài 4: trên cạnh bên AB của tam giác ABC cân, người ta lấy điểm D, trên tia đối tia CA lấy điểm E sao cho BD=CE . DE cắt BC ở F. Chứng minh F là trung điểm của DE

0