K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

bài 1 mk đã giải cho bạn kiên trần cách giải bài đó cũng như bài này nên bạn xem chỗ bạn kiên trần nhé!

1 tháng 2 2017

bài 2 theo mk là làm như thế này !

à mà bạn tự vẽ hình nhé!!!

Trong tứ giác ABCD , từ đỉnh A kẻ AH \(\perp\)DC , từ đỉnh B kẻ BG \(\perp\)DC.

Xét \(\Delta\)vuông ADH và \(\Delta\) vuông BCG có:

AD = BC ( đề cho)

góc D = góc C ( đề cho )

=> \(\Delta\)vuông ADH = \(\Delta\)vuông BCG ( cạnh huyền - góc nhọn )

=> AH = BG

mặt khác AH // BG ( cùng \(\perp\) BC )

=> Tứ giác ABGH là hình bình hành

=> AB // HG hay AB // DC

Tứ giác ABCD có góc D = góc C và AB // DC

=> ABCD là hình thang cân ( đpcm)

25 tháng 6 2021

a) Chứng minh: Tam giác ABE = Tam giác ACF (c.h - g.n)

=> AE = AF (2 cạnh tương ứng)

=> Tam giác AEF cân tại A

b)  Tam giác AEF cân tại A

\(\Rightarrow\widehat{AFE}=\dfrac{180^0-\widehat{BAC}}{2}\left(1\right)\)

Tam giác ABC cân tại A

\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(2\right)\)

Từ (1) và (2) => Góc AFE = Góc ABC

Mà 2 góc này đồng vị

=> EF // BC

=> BFEC là hình thang

Lại có: Tam giác ABE = Tam giác ACF (cmt) => BE = CF

=> BFEC là HTC

c) \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{170^0}{2}=85^0\)

Có: BF // BC

=> Góc ABC + Góc BFE = 180 độ

=> Góc BFE = 95 độ

Tương tự tính 2 góc còn lại nhé!

 

25 tháng 6 2021

a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(AB=AC\) (do tam giác ABC cân tại A)

\(\widehat{BAC}\) chung

\(\widehat{AEB}=\widehat{AFC}=90^0\)

nên \(\Delta AEB=\Delta AFC\left(ch.gn\right)\)

\(\Rightarrow AE=AF\) .Suy ra tam giác AEF cân tại A

b) Có \(\widehat{AFE}+\widehat{AEF}=180^0-\widehat{FAE}\)

\(\Leftrightarrow\)\(2\widehat{AFE}=180^0-\widehat{FAE}\) \(\Leftrightarrow\widehat{AFE}=\dfrac{180^0-\widehat{FAE}}{2}\)

Lại có:\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\)

\(\Leftrightarrow\)\(2\widehat{ABC}=180^0-\widehat{BAC}\)\(\Leftrightarrow\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)

\(\Rightarrow\widehat{AFE}=\widehat{ABC}\) mà hai góc nằm ở vị trí hai góc đồng vị nên FE//BC

\(\Rightarrow BFEC\) là hình thang mà \(\widehat{FBC}=\widehat{ECB}\) (vì tam giác BAC cân tại A)

nên BFEC là hình thang cân

c) Có \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-10^0}{2}\)\(=85\)\(^0\)

Vậy...

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà

18 tháng 10 2020

Xét \(\Delta BAD\)và \(\Delta ABC\)có:

\(\widehat{A}=\widehat{B}\)

\(AD=BC\)

\(AB\)chung

\(\Rightarrow\Delta BAD=\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow AC=BD\)(2 cạnh t.ư)

=>tứ giác ABCD là HTC

18 tháng 10 2020

A B C D

Cách 1 : Kẻ thêm đường phụ AC 

Và đường phụ BD 

Xét tam giác ADC và tam giác ABC ta có : 

AC chung 

AD = BC (gt)

^A = ^B (gt) 

=> tam giác ADC = tam giác ABC 

=> AB = DC ( 2 cạnh tương ứng bằng nhau ) 

hay 2 góc kề cạnh đáy bằng nhau => ABCD là hình thang 

Cách 2 : Ta có : AD = BC gt 

=> 2 cạnh bên bằng nhau Vậy ABCD là hình thang :))