Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA
(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m
(2) x1^2 +x^2 =12
=> 4(m+1)^2 -4m =12
m^2+m+1=3 => m=1, -2
=> m
(3) từ (2) GTNN A=3/4 khi x=-1/2
có thể sai đừng tin
\(2x^2-6x+2m-5=0\left(a=2;b=-6;c=2m-5\right)\)
\(\Delta=b'^2-ac=\left(-3\right)^2-2\left(2m-5\right)=19-4m\)
Để PT có hai nghiệm \(\Leftrightarrow\Delta>0\Leftrightarrow19-4m>0\Leftrightarrow m< \frac{19}{4}\)
Vậy với m < 19/4 thì PT có hai nghiệm
Áp dụng hệ thức vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{6}{2}=3\left(1\right)\\x_1x_2=\frac{c}{a}=\frac{2m-5}{2}\left(2\right)\end{cases}}\)
Theo bài ra ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=6\Rightarrow\frac{x_1+x_2}{x_1x_2}=6\left(3\right)\)
Thay (1) ; (2) vào (3) ta được:
\(\frac{3}{\frac{2m-5}{2}}=6\)
\(\Rightarrow\frac{6\left(2m-5\right)}{2}=3\)
\(\Rightarrow3\left(2m-5\right)=3\)
\(\Rightarrow2m-5=1\Rightarrow m=3\)(TMĐK m<19/4)
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
a) Phương trình có \(\Delta'=m^2-4m+8=\left(m-2\right)^2+4>0\forall m\)nên phương trình có 2 nghiệm phân biệt với mọi m
b) Do đó, theo Viet với mọi m ta có: \(S=-\frac{b}{a}=2m;P=\frac{c}{a}=m-2\)
\(M=\frac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{-24}{4m^2-8m+16}=\frac{-6}{m^2-2m+4}\)
\(=\frac{-6}{\left(m-1\right)^2+3}\)
Khi m=1 ta có (m-1)2+3 nhỏ nhất
=> \(-M=\frac{6}{\left(m-1\right)^2+3}\)lớn nhất khi m=1
=> \(M=\frac{-6}{\left(m-1\right)^2+3}\)nhỏ nhất khi m=1
Sử dụng định lí Vi-ét:
\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)
Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.
Sau đó bạn viết định lí Vi-ét và áp dụng và (*)
Kết hợp cả hai điều kiện lại là ra kết quả đúng.
x13+x23=(x1+x2)3-3x1x2(x1+x2)=23-3(-m2-4)2=10
<=> 6m2=-22 <=> m\(\in\varnothing\)
phương trình \(2x^2+mx+m-2=0\) có\(\Delta=m^2-4.2.\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2\ge0\left(\forall m\in R\right)\)
Vậy với \(\Delta\ge0\) thì phương trình luôn có hai nghiệm \(x_1,x_2\) với mọi m.