\(\dfrac{AG}{A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Có điểm C' ?

5 tháng 5 2017

Hình như là điểm C đó cậu.Chắc mình gõ nhầm

8 tháng 7 2017

A N C D M E B P G F

a) Gọi AM , BN , CP là các đường trung tuyến của \(\Delta ABC\) . Ta có GD = AG = 2GM và GD = GM + MD nên GM = MD

\(\Delta BMD=\Delta CMG\left(c.g.c\right)\)

\(\Rightarrow BD=CG=\dfrac{2}{3}CP\) (1)

Ta có \(BG=\dfrac{2}{3}BN\) (2)

\(GD=AG=\dfrac{2}{3}AM\) (3)

Từ (1) , (2) , (3) suy ra các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các đường trung truyến của \(\Delta ABC\)

b) Gọi CE , DF là các đường trung tuyến của \(\Delta BGD\) . Từ đây tự chứng minh \(BM=\dfrac{1}{2}BC;GE=\dfrac{1}{2}AB;DF=AN=\dfrac{1}{2}AC\)

17 tháng 4 2021
chịu mày giải cho tao đi
17 tháng 4 2021

ngta bài khó , ngta mới hỏi rồi lại hỏi lại ngta là sao ?

29 tháng 6 2020

a, xét tg BEM và tg CFM có : ^CFM = ^BEM = 90 

^ABC = ^ACCB do tg ABC cân tại A (gt)

CM = BM do M là trung điểm của BC (gt)

=> tg BEM = tg CFM (ch-gn)                                  (1)

b, (1) => CF = BE (đn)

AB = AC do tg ABC cân tại A (gt)

CF + AF = AC

BE + AE = AB

=> AF = AE 

29 tháng 6 2020

                                                Bài giải

A B C M E F G

a, Xét 2 tam giác vuông BME và CMF có :

MB = MC ( AM là đường trung tuyến ) : cạnh huyền

\(\widehat{B}=\widehat{C}\) ( tam giác ABC cân ) : góc nhọn

\(\Rightarrow\text{ }\Delta BME =\Delta CMF ( ch-gn ) \) ( 1 )

b, Từ ( 1 ) => BE = CF ( 2 cạnh tương ứng )

Mà AB = AE + BE

      AC = AF + CF

Mà BE = CF => AE = AF

c, Ta có :

\(AG=BG=\frac{2}{3}AM\text{ }\Rightarrow\text{ }\frac{AG+BG}{2}=\frac{\frac{2}{3}AM+\frac{2}{3}AM}{2}=\frac{\frac{4}{3}AM}{2}=\frac{3}{2}AM>BG\)

\(\Rightarrow\text{ }ĐPCM\)

3 tháng 4 2017

a) gọi AM,BN ,CH lần lượt là trung tuyến của tam giác ABC xuất phát từ các đỉnh A;B;C

Ta có BG=2/3BN( BN LÀ TRUNG TUYẾN CỦA TAM GIÁC ABC)

Ta có AG=2/3AM

=>GM=1/2AG

mà AG = GD

=> GM =MD= 1/2 GD

Xét tam giác GMC và DMB có :

GM=MD(cmt)

góc GMC=DMB (đối đỉnh)

BM=MC(gt)

=> 2 tam giác đó bằng nhau (c-g-c)

=>GC=BD (2-c-t-ứ) mà GC=2/3HC( vì CH là trung tuyến của tam giác ABC )=> BD=2/3CH

Ta có AG=2/3AM( AM là trung tuyến của tam giác ABC)

Mà AG=GD

=> GD=2/3AM