K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó : \(\frac{ac}{bd}=\frac{b.d.k^2}{b.d}=k^2\left(1\right);\)

\(\frac{2010a^2+2011c^2}{2010b^2+2011d^2}=\frac{2010b^2.k^2+2011d^2.k^2}{2010b^2+2011d^2}=\frac{k^2.\left(2010b^2+2011d^2\right)}{2010b^2+2011d^2}=k^2\left(2\right)\)

Từ (1)(2) => \(\frac{ac}{bd}=\frac{2010a^2+2011c^2}{2010b^2+2001d^2}\left(\text{đpcm}\right)\)

18 tháng 11 2016

\(\frac{a}{2b}\)=\(\frac{b}{2c}\) =\(\frac{c}{2d}\) =\(\frac{d}{2a}\)=\(\frac{a+b+c+d}{2a+2b+2c+2d}\)=\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\)=\(\frac{1}{2}\)

quên rùi............................

đáp số =2

1 tháng 3 2018

đáp số = 2

19 tháng 1 2017

Áp dụng TC DTSBN ta có :

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{a}{2b}=\frac{1}{2}\Rightarrow a=\frac{1}{2}.2b\Rightarrow a=b\) (1)

\(\Rightarrow\frac{b}{2c}=\frac{1}{2}\Rightarrow b=\frac{1}{2}.2c\Rightarrow b=c\) (2)

\(\Rightarrow\frac{c}{2a}=\frac{1}{2}\Rightarrow c=\frac{1}{2}.2a\Rightarrow c=a\) (3)

\(\Rightarrow\frac{d}{2a}=\frac{1}{2}\Rightarrow d=\frac{1}{2}.2a\Rightarrow d=a\) (4)

Từ (1);(2);(3):(4) \(\Rightarrow a=b=c=d\) .Thay vào A ta được :

\(A=\frac{2011a-2010a}{a+a}+\frac{2011a+2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)

\(=\frac{a}{2a}+\frac{4021a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{a+4021a+a+a}{2a}=\frac{4024a}{2a}=\frac{4024}{2}=2012\)

Vậy \(A=2012\)

31 tháng 3 2017

a)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(=>\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)

\(=>\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

\(=>\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=2\) hoặc \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=-2\)

Bộ thứ1 (x,y,z)=(6,8,10)

Bộ thứ 2 (x,y,z)=(-6;-8;-10)

b) Theo đề bài \(=>\frac{2b}{a}=\frac{2c}{b}=\frac{2d}{c}=\frac{2a}{d}=\frac{2.\left(a+b+c+d\right)}{a+b+c+d}=2\)

=>a=b=c=d

\(=>A=\frac{2011a-2010a}{2a}.4=\frac{a}{2a}.4=2\)( thay b,c,d=a, vì a=b=c=d)

3 tháng 3 2017

Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{1}{2}\)

\(\Rightarrow a=b;b=c;c=d;d=a\) hay \(a=b=c=d\)

\(\Rightarrow A=\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)

12 tháng 3 2017

 \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d+\right)}=\frac{1}{2}\)=\(\frac{1}{2}\)

\(\Rightarrow2a=2b,2b=2c,2c=2d,2d=2a\) 

\(\Leftrightarrow a=b=c=d\)

\(\Rightarrow A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}=\frac{2011d-2010a}{b+c}\)

\(\Leftrightarrow A=\frac{2011a-2010a}{a+a}+\frac{2011b-2010b}{b+b}+\frac{2011c-2010c}{c+c}+\frac{2011d-2010d}{d+d}\)

\(\Leftrightarrow A=\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}\) 

\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)