Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D N E M I K 1 2 1 1
Giải: Xét t/giác ABE và t/giác ANM
có: AB = BN (gt)
\(\widehat{B_1}=\widehat{N_1}\) (slt của AE // MN)
\(\widehat{B_1}=\widehat{B_2}\) (đối đỉnh)
=> t/giác ABE = t/giác ANM (g.c.g)
=> EA = AM (2 cạnh t/ứng)
Xét tứ giác EBMN có AB = AN (gt)
EA = MA (cmt)
=> tứ giác EBMN là hình bình hành
có BN \(\perp\)EM (gt)
=> EBMN là hình thoi
Để hình thoi EBMN là hình vuông
<=> EM = BN <=> AB = AM
do AM = MC = 1/2AC
<=> AB = 1/2AC
<=> AC = 2AB
Vậy để tứ giác EBMN là hình vuông <=> t/giác ABC có AC = 2AB
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.