Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhớ tick
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
1) Xét ΔABM và ΔCDM có
AM=CM(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
BM=DM(gt)
Do đó: ΔABM=ΔCDM(c-g-c)
Suy ra: AB=CD(hai cạnh tương ứng)
Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
2) Xét ΔAMD và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MB(gt)
Do đó: ΔAMD=ΔCMB(c-g-c)
Suy ra: AD=CB(hai cạnh tương ứng)
Xét ΔABC và ΔCDA có
AB=CD(cmt)
AC chung
BC=DA(cmt)
Do đó: ΔABC=ΔCDA(c-c-c)
Suy ra: \(\widehat{ABC}=\widehat{CDA}\)(hai góc tương ứng)
c: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
\(\widehat{MBH}=\widehat{MCK}\)
Do đó; ΔMHB=ΔMKC
Suy ra: BH=CK
Xét tứ giác HBKC có
HB//KC
HB=KC
Do đó: HBKC là hình bình hành
SUy ra: HK và BC cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
hay H,M,K thẳng hàng
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
a) Xét \(\Delta AIB\),\(\Delta AIC\) có: ^BAI=^CAI (gt) , AI chung, AB=AC
=>\(\Delta AIB\)=\(\Delta AIC\)(c.g.c)
b) Xét\(\Delta AMD\), \(\Delta CMB\) có: ^AMD=^BMC (2 goc đối điỉnh)
AM=MC(gt) ; BM=MD(gt)
=>\(\Delta AMD\)=\(\Delta CMB\)(c.g.c)
=> AD=BC ; BD=AC
Xét \(\Delta ABC\) => AB+BC>AC ( bđt trong tam giác)
mà AC=BD => AB+BC>BD
c) xét \(\Delta AHM\),\(\Delta CKM\) (^AHM=^CKM=90o) có: AM=MC(gt) , ^AMH=^CMK ( 2gocs dd)
=>\(\Delta AHM\)=\(\Delta CKM\)
=>AH=CK
=>AH+CK=2AH
Xét \(\Delta AHM\) vuông tại H:=> ^AMH< ^AHM
=> AM>AH
=>2AM>2AH
mà 2AM=AC(gt) 2AH= AH +CK
=>AC>AH+CK
Bài 2
Bài làm
a) Xét tam giác ABM và tam giác DCM có:
BM = MC ( Do M là trung điểm BC )
^AMB = ^DMC ( hai góc đối )
MD = MA ( gt )
=> Tam giác ABM = tam giác DCM ( c.g.c )
b) Xét tam giác BHA và tam giác BHE có:
HE = HA ( Do H là trung điểm AE )
^BHA = ^BHE ( = 90o )
BH chung
=> Tam giác BHA = tam giác BHE ( c.g.c )
=> AB = BE
Mà tam giác ABM = tam giác DCM ( cmt )
=> AB = CD
=> BE = CD ( đpcm )
Bài 3
Bài làm
a) Xét tam giác ABD và tam giác ACD có:
AB = AB ( gt )
BD = DC ( Do M là trung điểm BC )
AD chung
=> Tam giác ABD = tam giác ACD ( c.c.c )
b) Xét tam giác BEC và tam giác MEA có:
AE = EC ( Do E kà trung điểm AC )
^BEC = ^MEA ( hai góc đối )
BE = EM ( gt )
=> Tam giác BEC = tam giác MEA ( c.g.c )
=> BC = AM
Mà BD = 1/2 . BC ( Do D là trung điểm BC )
hay BD = 1/2 . AM
Hay AM = 2.BD ( đpcm )
c) Vì tam giác ABD = tam giác ACD ( cmt )
=> ^ADB = ^ADC ( hai góc tương ứng )
Mà ^ADB + ^ADC = 180o ( hai góc kề bù )
=> ^ADB = ^ADC = 180o/2 = 90o
=> AD vuông góc với BC (1)
Vì tam giác BEC = tam giác MEA ( cmt )
=> ^EBC = ^EMA ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong
=> AM // BC (2)
Từ (1) và (2) => AM vuông góc với AD
=> ^MAD = 90o
# Học tốt #
a: Xét ΔAMB và ΔCMD có
MB=MD
\(\widehat{AMB}=\widehat{CMD}\)
MA=MC
Do đó: ΔAMB=ΔCMD