Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Bài 1: Ta có hình vẽ sau:
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a) Ta có: góc ^ADC=180* -(^CAD+^C)
^BDA=180*-(^BAD+^B)
mà ^CAD=^BAD(giả thiết)
^C=^B(giả thiết)
--> ^ADC=^BDA
lại có:
^CAD=^BAD(gt)
AD chung
--> tam giác ABD=tam giác ACD
Bài 1:
a) Ta có: AB+BD=AD(B nằm giữa A và D)
AC+CE=AE(C nằm giữa A và E)
mà AB=AC(ΔABC cân tại A)
và BD=CE(gt)
nên AD=AE
Xét ΔADE có AD=AE(gt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)
mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị
nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: \(\widehat{ABC}+\widehat{DBC}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ECB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{DBC}=\widehat{ECB}\)
Xét ΔDBC và ΔECB có
DB=EC(gt)
\(\widehat{DBC}=\widehat{ECB}\)(cmt)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: DC=EB(hai cạnh tương ứng)
c) Ta có: ΔDBC=ΔECB(cmt)
nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)
nên ΔKBC cân tại K(Định lí đảo của tam giác cân)
⇒KB=KC(Hai cạnh bên)
Ta có: KB+KE=BE(K nằm giữa B và E)
KC+KD=CD(K nằm giữa C và D)
mà KB=KC(cmt)
và BE=CD(cmt)
nên KE=KD
Xét ΔKED có KE=KD(cmt)
nên ΔKED cân tại K(Định nghĩa tam giác cân)
d) Xét ΔBAK và ΔCAK có
BA=CA(ΔABC cân tại A)
AK chung
BK=CK(cmt)
Do đó: ΔBAK=ΔCAK(c-c-c)
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)
mà tia AK nằm giữa hai tia AB,AC
nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)
e) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔABC cân tại A)
mà \(\widehat{ABC}=\widehat{DBM}\)(hai góc đối đỉnh)
và \(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)
nên \(\widehat{DBM}=\widehat{ECN}\)
Xét ΔDBM vuông tại M và ΔECN vuông tại N có
BD=CE(gt)
\(\widehat{DBM}=\widehat{ECN}\)(cmt)
Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)
Suy ra: DM=EN(hai cạnh tương ứng)
f) Ta có: ΔDBM=ΔECN(cmt)
nên BM=CN(hai cạnh tương ứng)
Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(cmt)
Do đó: ΔABM=ΔACN(c-g-c)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)