Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1
b) M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Sắp xếp theo lũy thừa giảm dần của biến:
\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)
b. P(x) - Q(x)=\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\right)\)
=\(5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-\dfrac{1}{4}\)
=\(\left(5x^5+x^5\right)+\left(-4x^4-2x^4\right)+\left(-2x^3+2x^3\right)+\left(4x^2-3x^2\right)+\left(3x+x\right)+\left(6-\dfrac{1}{4}\right)\)
=\(6x^5-6x^4+x^2+4x+\dfrac{23}{4}\)
c.Ta có:\(P\left(-1\right)=5.\left(-1\right)^5-4.\left(-1\right)^4-2.\left(-1\right)^3+4.\left(-1\right)^2+3.\left(-1\right)+6\)
= -5 -4 +2 +4 -3 +6
= 0
\(Q\left(x\right)=-\left(-1\right)^5+2.\left(-1\right)^4-2.\left(-1\right)^3+3.\left(-1\right)^2-\left(-1\right)+\dfrac{1}{4}\)
= 1 + 2 +2 +3 +1 +\(\dfrac{1}{4}\)
= \(\dfrac{37}{4}\ne0\)
Vậy x=-1 là nghiệm của đa thức P(x) nhưng k là nghiệm của đa thức Q(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)
\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)
\(=3x^4-5x^3-x^2+x-5\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)
\(=x^4-x^3-x-1\)
b) \(A\left(x\right)+B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)
\(=5x^4-6x^3-x^2-6\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)
\(=2x^4-4x^3-x^2+2x-4\)
1a, M(x)=\(x^4+x^2+1\)
b,M(-1)=(-1)\(^4\)+(-1)\(^2\)+1
=3
M(1)=(1)\(^4\)+(1)\(^2\)+1
=3
2a,P(x)=\(6x^4-3x^3+2x^2+2010\)
Q(x)=\(-3x^4+2x^3-5x^2-2011\)
b,P(x)+Q(x)=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011
=(6x\(^4\)-3x\(^4\))+(-3x\(^3\)+2x\(^3\))+(2x\(^2\)-5x\(^2\))+(2010-2011)
= 3x\(^4\)-x\(^3\)-3x\(^2\)-1
P(x)-Q(x)=(6x\(^4\)-3x\(^3\)+2x\(^2\)+2010)-(-3x\(^4\)+2x\(^3\)-5x\(^2\)-2011)
=6x\(^4\)-3x\(^3\)+2x\(^2\)+2010+3x\(^4\)-2x\(^3\)+5x\(^2\)+2011
=(6x\(^4\)+3x\(^4\))+(-3x\(^3\)-2x\(^3\))+(2x\(^2\)+5x\(^2\))+(2010+2011)
= \(9x^4-5x^3+7x^2+4021\)
3a,P(x)=0<=>4x-1/2=0<=>4x=1/2<=>x=1/8
vậy 1/8 là n\(_o\) của P(x)
b,Q(x)=0<=>(x-1)(x+1)=0
<=>\(\left\{{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
vậy 1 và -1 là n\(_o\) của Q(x)
c,A(x)=0<=>-12x+18=0<=>-12x=-18<=>x=3/2
vậy 3/2 là n\(o\) của A(x)
d,B(x)=0<=>\(-x^2+16\)=0<=>-x\(^2\)=16<=>-(x)\(^2\)=-(\(\pm\)4)\(^2\)
<=>x=\(\pm\)4
vậy \(\pm\)4 là n\(_o\)củaB(x)
e,C(x)=0<=>3x\(^2\)+12=0<=>3x\(^2\)=-12<=>x\(^2\)=-4<=>x\(^2\)=-(4)\(^2\)
<=>x=4
vậy 4 là n\(_o\) của C(x)