\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: ĐKXĐ: x>=0; x<>1

b: \(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\dfrac{2\sqrt{x}}{2}\cdot\left(\sqrt{x}-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)

c: Thay x=4/25 vào G, ta được:

\(G=-\dfrac{2}{5}\cdot\left(\dfrac{2}{5}-1\right)=\dfrac{-2}{5}\cdot\dfrac{-3}{5}=\dfrac{6}{25}\)

 

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

19 tháng 12 2018

a. ĐKXĐ: x\(\ne1\) x, \(\ne-1\)

b. \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)

=\(\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

=\(\left(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(\left(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\left(\dfrac{\left(\sqrt{x}-2\right)-\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\left(\dfrac{\sqrt{x}-2-\sqrt{x}-2}{\sqrt{x}+1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\dfrac{4}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1^2}{2}=2\left(\sqrt{x}-1\right)=2\sqrt{x}-2\)

c. khi x=0,16 thì G=\(2\sqrt{x}-2=2\sqrt{0,16}-2=2.0,4-2=0,8-2=-1,2\)

22 tháng 8 2018

điều kiện xác định : \(x\ge0;x\ne1\)

a) ta có : \(G=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)

\(\Leftrightarrow G=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

\(\Leftrightarrow G=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(x-1\right)^2}{2}\) \(\Leftrightarrow G=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(x-1\right)^2}{2}=\sqrt{x}-x\)

b) thay \(x=0,16\) vào \(G\) ta có : \(G=\sqrt{0,16}-0,16=0,24\)

c) ta có : \(G=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{-1}{4}\)

\(\Rightarrow G_{max}=\dfrac{-1}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

d) ta có : \(G=\sqrt{x}-x\) \(\Rightarrow\) để \(G\in Z\) \(\Rightarrow x=a^2\ne1\)

e) ta có : \(G>0\Leftrightarrow\sqrt{x}-x>0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0\\1-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0< x< 1\\x\in\varnothing\end{matrix}\right.\) \(\Rightarrow\left(đpcm\right)\)

f) để \(G< 0\Leftrightarrow\sqrt{x}-x< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0\\1-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x\in\varnothing\end{matrix}\right.\) vậy \(x>1\)

22 tháng 1 2021

bạn có thể làm chi tiết dòng thứ tư phần rút gọn đc ko ?