Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
d> Ta có: \(\frac{-1}{x-2}\)( Theo a )
Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1
*> X-2=1 => X=3 (TMĐK)
*> X-2=-1 => X=1 (TMĐK)
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
1/
\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)
\(\Leftrightarrow x=14\)
vậy...................
2/
\(a,ĐKXĐ:x\ne\pm2\)
\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
a, đkxđ:x# 2 , x# -2
b,
A = \(\frac{x+1}{x-2}\)=0
<=> x + 1 = 0
<=> x = -1
c,B=\(\frac{x2}{x^2-4}\)
Mà x= \(-\frac{1}{2}\)
<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)
<=>\(\frac{1}{4}:\frac{-15}{4}\)
<=>\(\frac{1}{4}.\frac{4}{-15}\)
<=>\(\frac{-1}{15}\)
d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)
\(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
b,\(A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(A=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x+8}{3\left(x-2\right)\left(x+2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x-8}{3\left(x-2\right)\left(x+2\right)}\)
c, Thay x = 1 vào A ta đc
\(\frac{1-8}{3\left(1-2\right)\left(1+2\right)}=\frac{7}{9}\)
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x-6\ne0\\x^2-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne6\\x^2\ne4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne2\\x\ne\pm2\end{cases}\Leftrightarrow}x\ne\pm2}\)
Vậy A xác định khi \(x\ne\pm2\)
b) \(A=\frac{4}{3x-6}-\frac{x}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow A=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{4\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{4x+8}{3\left(x+2\right)\left(x-2\right)}-\frac{3x}{3\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{4x+8-3x}{3\left(x-2\right)\left(x+2\right)}=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
Vậy \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\left(x\ne\pm2\right)\)
c) Thay x=1 (tmđk) vào A ta có: \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
Vậy \(A=-1\)khi x=1