K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

1)Ta thấy: \(\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)

=>A=\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}...+\dfrac{1}{50^2}< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49.50}\)

A<\(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

Vậy A<2

2)Ta có:2S=6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\)

2S-S=(6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\))-(3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\))

=>S=6-\(\dfrac{3}{2^9}=\dfrac{6.2^9-3}{2^9}\)

Vậy S=\(\dfrac{6.2^9-3}{2^9}\)

4 tháng 5 2017

Các bạn cố giúp mink nhé mai mình phải nộp rồi

16 tháng 6 2021

`A=(8 2/7-4 2/7)-3 4/9`

`=8+2/7-4-2/7-3-4/9`

`=4-3-4/9`

`=1-4/9=5/9`

`B=(10 2/9-6 2/9)+2 3/5`

`=10+2/9-6-2/9+2+3/5`

`=4+2+3/5`

`=6+3/5=33/5`

Bài 2:

`a)5 1/2*3 1/4`

`=11/2*13/4`

`=143/8`

`b)6 1/3:4 2/9`

`=19/3:38/9`

`=19/3*9/38=3/2`

`c)4 3/7*2`

`=31/7*2`

`=62/7`

Bài 1:

\(A=\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\) 

\(A=\left(\dfrac{58}{7}-\dfrac{30}{7}\right)-\dfrac{31}{9}\) 

\(A=4-\dfrac{31}{9}\) 

\(A=\dfrac{5}{9}\) 

 

\(B=\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\) 

\(B=\left(\dfrac{92}{9}-\dfrac{56}{9}\right)+\dfrac{13}{5}\) 

\(B=4+\dfrac{13}{5}\) 

\(B=\dfrac{33}{5}\)

11 tháng 5 2022

ơi

11 tháng 5 2022

28 tháng 2 2023

Câu b hướng làm đó là tách con 1/3 và 1/2 ra thành 50 phân số giống nhau. E tách 1/3=50/150 rồi so sánh 1/101, 1/102,...,1/149 với 1/150. Còn vế sau 1/2=50/100 tách tương tự rồi so sánh thôi

AH
Akai Haruma
Giáo viên
28 tháng 2 2023

2a.

$\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
$=1-\frac{1}{50}< 1$ (đpcm)

1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50

=1/1-1/2+1/2-1/3+...+1/49-1/50<1

=>S<1+1=2

1: 

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

...

\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+..+\dfrac{1}{7\cdot8}\)

=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{7}{8}< 1\)

8 tháng 5 2017

Câu a :

Chưa nghĩ ra! Sorry nhé!!

Câu b :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Câu c :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Vào link đó mà xem, t ngại chép lại

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)

...

\(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)

Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}>\dfrac{90.9}{303}=\dfrac{3}{10}\)(1)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}< \dfrac{50}{100}=\dfrac{1}{2}\)(2)

Từ (1),(2) suy ra \(\dfrac{3}{10}< \dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)