\(\widehat{A}=\)70 độ. Tính số đo \(\wi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Ta có: Tam giác ABC cân tại  B

=> \(\widehat{A}=\widehat{C}\)

=> \(\widehat{C}\)=70 độ

Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180\)độ

=> \(\widehat{B}=\)180 - (\(\widehat{A}+\widehat{C}\))

Hay \(\widehat{B}\)=180 - (70 + 70)

               =180 - 140 = 40 độ

=> \(\widehat{B}\)= 40 độ

Kết bạn vs tớ nhiều nha

Vì tam giác ABC là tam giác cân tại B,ta có : góc A = góc C 

xét tam giác cân ABC,có:

\(\widehat{A}+\widehat{B}+\widehat{C}\) = 1800 ( tổng ba góc của tam giác) 

=> 700 + \(\widehat{B}\) + 700 = 180

=>           x                 = 180 - ( 700 + 700 )

=>           x                  = 400 

vậy góc B bằng 40

20 tháng 11 2018

a) ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Leftrightarrow\widehat{B}+\widehat{C}=100^0\Leftrightarrow\widehat{B}=100^0-\widehat{C}\)

\(\widehat{B}-\widehat{C}=20^0\Leftrightarrow100^0-\widehat{C}-\widehat{C}=20^0\Leftrightarrow\widehat{C}=40^0\)

vậy \(\widehat{B}=100^0-\widehat{C}=60^0\)

b) ta có \(\widehat{B}=3\widehat{C}\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Leftrightarrow\widehat{B}+\widehat{C}=110^0\Leftrightarrow4\widehat{C}=110^0\Rightarrow\widehat{C}=27,5^0\)

\(\widehat{B}=3\widehat{C}=27,5^0.3=82,5^0\)

21 tháng 11 2018

Violympic toán 7Violympic toán 7

15 tháng 8 2017

Bạn tự vẽ hình nha 

Bài giải 

a, Ta có : Tổng 3 trong một tam giác bằng 1800

=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

Hay : \(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)

\(\Rightarrow\widehat{A}=180^0-\left(70^0+30^0\right)\)

\(\Rightarrow\widehat{A}=80^0\)

Mặt khác : tia phân giác của góc A cắt ABC tại D

\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{80^0}{2}=40^0\)

Ta có : \(\widehat{ADC}=180^0-\left(\widehat{DAC}+\widehat{C}\right)\)

\(\Rightarrow\widehat{ADC}=180^0-\left(40^0+30^0\right)\)

\(\Rightarrow\widehat{ADC}=110^0\)

bn nào có thể giải câu b giúp mk được ko.

6 tháng 4 2020

Sửa đề : Cho tam giác ABC có : \(5\widehat{C}=\widehat{A}+\widehat{B}\)

Tính số đo các góc \(\widehat{A},\widehat{B},\widehat{C}\)biết \(\widehat{A}:\widehat{B}=2:3\)

Ta có : \(\widehat{A}=\frac{2}{3}\widehat{B}\)

\(\widehat{5C}=\widehat{A}+\widehat{B}=\frac{2}{3}\widehat{B}+\widehat{B}=\frac{5}{3}\widehat{B}\Rightarrow\widehat{C}=\frac{1}{3}\widehat{B}\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^O\Rightarrow\frac{2}{3}.\widehat{B}+\widehat{B}+\frac{\widehat{B}}{3}\Rightarrow\widehat{B}=90^O\Rightarrow\hept{\begin{cases}\widehat{A}=60^O\\\widehat{B}=30^O\end{cases}}\)

23 tháng 7 2018

Bài 1: 

\(\widehat{A}\div\widehat{B}\div\widehat{C}=1\div2\div3=\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Tổng ba góc của một tam giác)

Áp dụng t/d dãy tỉ số bằng nhau, ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30\)

\(\Rightarrow\widehat{A}=30.1=30^0\)

     \(\widehat{B}=30.2=60^0\)

     \(\widehat{C}=30.3=90^0\)

Vậy .....

23 tháng 7 2018

Bài 2: 

Gọi số đo các góc của tam giác ABC lần lượt là: a;b;c (\(a;b;c\inℕ^∗\) )

Ta có: \(a-b=18^0\Rightarrow a=18+b\)

          \(b-c=18^0\Rightarrow c=b-18\)

Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

                      \(\Leftrightarrow a+b+c=180^0\)

                       \(\Leftrightarrow18+b+b+b-18=180^0\)

                        \(\Leftrightarrow3b=180^0\Rightarrow b=60\Rightarrow\widehat{B}=60^0\)

                          \(\Rightarrow\widehat{A}=18^0+\widehat{B}=18^0+60^0=78^0\)

                          \(\Rightarrow\widehat{C}=180^0-60^0-78^0=42^0\)

Vậy .....