Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)
\(B=1-\frac{1}{2015}\)
\(B=\frac{2014}{2015}\)
a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
còn lại tự giải nha gần giống như phần b thôi cũng thú vị.
ủng hộ nha
Ta có :
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\left(\frac{1}{2^2}-\frac{2^2}{2^2}\right).\left(\frac{1}{3^2}-\frac{3^2}{3^2}\right).\left(\frac{1}{4^2}-\frac{4^2}{4^2}\right)...\left(\frac{1}{100^2}-\frac{100^2}{100^2}\right)\)
\(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right)...\left(-\frac{99}{100^2}\right)\)
\(A=-\left(\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4....10.10}\right)\)
\(A=-\left(\frac{1.2.3....9}{2.3.4....10}.\frac{3.4.5.....11}{2.3.4....10}\right)\)
\(A=-\left(\frac{1}{10}.\frac{11}{2}\right)=-\frac{11}{20}=\frac{-11}{20}\)
Lại có : \(\frac{-1}{2}=\frac{-1.10}{2.10}=\frac{-10}{20}\)
Vì \(-11< -10\)nên \(\frac{-11}{20}< \frac{-10}{20}\)hay \(A< \frac{-1}{2}\)
Mk mới học bài này xong,nhớ ủng hộ mk nha !!! ^_^
Câu 1:
Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)
\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy:.............
Câu 2:
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)
\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)
\(=\frac{100}{2}=50\)
1. a) 2B = 1 + 1/2 + 1/22+...+1/298
B - B = (1+1/2+...+1/298) - (1/2+....+1/299)
B = 1 - 299 => B < 1
b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)
1. a). Theo đầu bài ta có:
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)
\(=\frac{1}{1000}\)
chúc
bn
hk
tốt