Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có:\(\frac{3}{1^2.2^2}>\frac{1}{9};\frac{5}{2^2.3^2}>\frac{1}{9};.....;\frac{19}{9^210^2}>\frac{1}{9}\)
=>\(\frac{3}{1^22^2}+\frac{5}{2^23^2}+...+\frac{19}{9^210^2}>9.\frac{1}{9}=1\)
Vậy: A > 1
2)
Ta có A=1-7+13-19+25-31+........
=(1+13+25)-(7+19+13)-......
= 39 - 39 -......
=0
Vậy: A=0
dễ vct \(\frac{3}{1^2.2^2}=\frac{1}{1^2}-\frac{1}{2^2}\)
tương tự
ta có:
\(\frac{1}{11}\)>\(\frac{10}{20}\)
\(\frac{1}{12}\)>\(\frac{10}{20}\)
\(\frac{1}{13}\)>\(\frac{10}{20}\)
....
\(\frac{1}{19}\)>\(\frac{10}{20}\)
=>E >\(\frac{10}{20}\)
vậy E > \(\frac{1}{2}\)
\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\)
\(A=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{19}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Chúc bạn học tốt+-*/
bài làm
C=1+3+32+.............+3100
C=3C−C2
3C=3+32+33+.............+399+3100+3101
C=1+3+32+..................+399+3100
3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100)
Triệt tiêu các số hạng co giá trị tuyệt đối bằng nhau, ta được:
2C=-1+3100
⇒C=3100−12
D=2/D+D/3
2D=2101-2100+299-298+..............+23-22
D=2100-299+298-297+............+22-2
2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2
Triệt tiêu các số hạng có giá trị tuyệt đối bằng nhau, ta được:
3D=2101-2
⇒D=2101−23
B=31×4 +54×9 +79×16 +.........+1981×100
Quan sát biểu thức, ta có nhận xét:
4-1=3;
9-4=5;
16-9=7;
.......;100-81=19
=> Hiệu hai số ở mẫu bằng giá trị ở tử
⇒B=1−14 +14 −19 +19 −116 +.......+181 −1100
⇒B=1−1/100
B=99/100 <100/100
Vậy B<1
A<1
bạn tính phần mẫu ra rồi làm như dạng sai phân bình thường
i nhanh và đúng mk k cho nhé, mk hứa