Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+...+3^{2016}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2015}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{2015}\right)\)
Vậy A chia hết cho 4
_____________
\(A=3+3^2+3^3+...+3^{2016}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2014}\cdot\left(1+3+9\right)\)
\(A=13\cdot\left(3+3^4+...+3^{2014}\right)\)
Vậy A chia hết cho 13
A = 1 + 2 + 22 + ... + 22015
A = ( 1 + 2 + 22 + 23) + ... + ( 22012 + 22013 + 22014 + 22015 )
A = 1(1+2+4+8) + .... + 22012(1+2+4+8)
A = 15.(1+...+22012) chia hết cho 3
=> đpcm
A=2+22+23+24+....+22016
A=(2+22)+(23+24)+...+(22015+22016)
A=2.(1+2)+23.(1+2)+...+22015.(1+2)
A=2.3+23.3+....+22015.3
A=3.(2+23+..+22015) chia hết cho 3
Vậy A chia hết cho 3