Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Phương trình hoành độ giao điểm là:
\(x+2=-\dfrac{1}{2}x-1\)
=>\(x+\dfrac{1}{2}x=-1-2\)
=>1,5x=-3
=>x=-3/1,5=-2
Thay x=-2 vào y=x+2, ta được:
y=-2+2=0
Vậy: (d1) cắt (d2) tại điểm A(-2;0) nằm trên trục hoành
b: Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x+2=0+2=2\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}x-1=-\dfrac{1}{2}\cdot0-1=-1\end{matrix}\right.\)
A(-2;0); B(0;2); C(0;-1)
\(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(0+2\right)^2+\left(-1-0\right)^2}=\sqrt{2^2+\left(-1\right)^2}=\sqrt{5}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-1-2\right)^2}=\sqrt{0^2+\left(-3\right)^2}=3\)
Xet ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{\sqrt{5}}{3}\)
nên \(\widehat{B}\simeq48^011'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+48^011'=90^0\)
=>\(\widehat{ACB}=41^049'\)
c: Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=2\sqrt{2}+\sqrt{5}+3\)
Vì ΔABC vuông tại A
nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{5}=\sqrt{10}\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-2=-x+1\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
a)
b, Gọi giao điểm của 2 đường thẳng trên là M(x1;y1)
tọa độ giao điểm của (d1) và (d2) là nghiệm của hpt
<=>
Vậy...
c, phương trình đường thẳng (d3) có dạng y=ax+b
Vì đt(d3) song song với (d2) và cắt đường thẳng (d1) tại một điểm nằm trên trục tung nên ta được a=-1, x=0,y=-7
=> b=-7
Thay a=-1, b=-7 vào cths y=ax+b ta được
y=-x-7
(d1): y = 1/2x + 2
và (d2): y = -x + 2
1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.
(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)
(d2) là đường thẳng đi qua hai điểm (0; 2) và (2;0)
2. Tính chu vi và diện tích của tam giác ABC
(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2
Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:
\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)
\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)
Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6
≈ 13,30
Diện tích tam giác ABC
\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)
NHÉ THAK NHÌU
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3