Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để \(\dfrac{2}{x-1}< 0\) thì x-1<0
hay x<1
b: Để \(\dfrac{-5}{x-1}< 0\) thì x-1>0
hay x>1
c: Để \(\dfrac{7}{x-6}>0\) thì x-6>0
hay x>6
d: Để \(\dfrac{x+2}{x-6}>0\) thì x-6>0 hoặc x+2<0
=>x>6 hoặc x<-2
1)
\(\frac{a}{b}=\frac{a+c}{b+c}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a}{b}=\frac{a+c}{b+c}=\frac{\left(a+c\right)-a}{\left(b+c\right)-b}=\frac{c}{c}=1\)
=>\(\frac{a}{b}=1\)
Vậy diều kiên của a/b là \(\frac{a}{b}=1\)
2)
Sửa đề thành
\(\frac{a}{b}=\frac{a+x}{b+y}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{a}{b}=\frac{a+x}{b+y}=\frac{\left(a+x\right)-a}{\left(b+y\right)-b}=\frac{x}{y}\)
Vậy để \(\frac{a}{b}=\frac{a+x}{b+y}\) thì \(\frac{x}{y}=\frac{a}{b}\)
\(A=\frac{1}{\sqrt{2}}.\sqrt{2}x.y.y\le\frac{1}{27\sqrt{2}}\left(\sqrt{2}x+2y\right)^3\)
\(A\le\le\frac{1}{27\sqrt{2}}\left(\sqrt{\left(2+4\right)\left(x^2+y^2\right)}\right)^3=\frac{4\sqrt{6}}{9}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{\sqrt{6}}{3}\\y=\frac{2\sqrt{2}}{3}\end{matrix}\right.\) \(\Rightarrow x+y^2=\frac{4+\sqrt{6}}{3}\)
\(\Rightarrow P=61\)
Bài 1:
a) Để x là số âm <=>x<0
<=> \(\frac{a-4}{7}< 0\Leftrightarrow a-4< 0\Leftrightarrow a< 4\)
b) Để x là số dương <=> x>0
<=> \(\frac{a-4}{7}>0\Leftrightarrow a-4>0\Leftrightarrow a>4\)
c) x k phải là số âm k phải là số dương <=>x=0
<=> \(\frac{a-4}{7}=0\Leftrightarrow a-4=0\Leftrightarrow a=4\)
mk thanks bn nhìu lắm nha @@