K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì \(2.8\cdot0.4=1.4\cdot0.8\)

nên 2,8/0,8=1,4/0,4; 2,8/1,4=0,8/0,4; 0,8/2,8=0,4/1,4; 1,4/2,8=0,4/0,8

b: Vì x,y,z tỉ lệ với 3;5;6 nên x/3=y/5=z/6=k

=>x=3k; y=5k; z=6k

\(M=\dfrac{2x-3y+4z}{x-11y-4z}=\dfrac{6k-15k+24k}{3k-55k-24k}=\dfrac{-15}{76}\)

17 tháng 11 2017

Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x

=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x

=> 2x+3y-1 / 12 = 2x+3y-1 / 6x

=> 12 = 6x => x =2

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

2 tháng 9 2017

Theo đề bài, ta có:
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{2x}{6}\)=\(\dfrac{3y}{15}\)=\(\dfrac{4z}{24}\)
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{x}{3}\)=\(\dfrac{11y}{55}\)=\(\dfrac{4z}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{2x}{6}\)=\(\dfrac{3y}{15}\)=\(\dfrac{4z}{24}\)= \(\dfrac{2x-3y+4z}{6-15+24}\)=\(\dfrac{2x-3y+4z}{15}\)(*)
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{x}{3}\)=\(\dfrac{11y}{55}\)=\(\dfrac{4z}{24}\)=\(\dfrac{x-11y-4z}{3-55-24}\)=\(\dfrac{x-11y-4z}{-76}\)(**)
Từ (*) và (**) suy ra:
\(\dfrac{2x-3y+4z}{15}\)=\(\dfrac{x-11y-4z}{-76}\)=\(\dfrac{2x-3y+4z}{x-11y-4z}\)=\(\dfrac{15}{-76}\)
=> m=\(\dfrac{15}{-76}\)
Vậy m=\(\dfrac{15}{-76}\)

17 tháng 10 2018

Câu 1

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{8y+2}{18+6x}=\dfrac{2.\left(1+4y\right)}{2.\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)

\(\dfrac{1+4y}{24}=\dfrac{1+4y}{9+3x}\)

\(\Rightarrow9+3x=24\)

\(\Rightarrow3x=24-9=15\)

\(\Rightarrow x=15:3=5\)

Vậy \(x=5\)

\(2,\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)

\(=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\left(đpcm\right)\)

17 tháng 10 2018

câu 1 còn tìm y nữa mà

26 tháng 10 2017

a, Ta có: \(7y=5z\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\)

Ta lại có: \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)\(2x+3y-z=186\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

+) \(\dfrac{2x}{30}=3\Rightarrow2x=3.30=90\Rightarrow x=90:2=45\)

+) \(\dfrac{3y}{60}=3\Rightarrow3y=3.60=180\Rightarrow y=180:3=60\)

+) \(\dfrac{z}{28}=3\Rightarrow z=3.28=84\)

Vậy ...

3 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

\(=\dfrac{2x-3y+z}{18-36+20}\)

\(=\dfrac{6}{2}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.12=36\\z=3.20=60\end{matrix}\right.\)

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow x.\dfrac{2}{3}=y.\dfrac{3}{4}=z.\dfrac{4}{5}\)

\(\Rightarrow x:\dfrac{3}{2}=y:\dfrac{4}{3}=z:\dfrac{5}{4}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

\(=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}\)

\(=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.\dfrac{3}{2}=18\\y=12.\dfrac{4}{3}=16\\z=12.\dfrac{5}{4}=15\end{matrix}\right.\)

4 tháng 8 2017

Ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)

\(\dfrac{y}{3}=\dfrac{z}{5}=>\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ (1),(2)=>\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)=\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

=>\(\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

22 tháng 10 2017

a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x

Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y

= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y

Ta lại có : 1 + 4y/24 = 1+4y / 9+3y

=> 24=9+3y => 15=3y => y=5

Vậy y=5

Nhớ like

22 tháng 10 2017

b, 1+3y/12 = 1+5y/5x = 1+7y/4x

Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x

= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x

Ta lại có: 1+5y / 5x = 1+5y / 6+2x

=> 5x = 6+2x => 3x = 6 => x=2

Vậy x =2

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ