Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(cota=\dfrac{1}{1.5}=\dfrac{2}{3}\)
b: \(sina=\sqrt{1-\dfrac{3}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{1}{2}:\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{3}\)
\(cota=\dfrac{3}{\sqrt{3}}=\sqrt{3}\)
a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)
- \(cosx=\frac{1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
- \(cosx=\frac{-1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)
b) Bạn làm tương tự câu a) nha.
Bài 2:
\(1+\tan ^2a=1+\frac{\sin ^2a}{\cos ^2a}=\frac{\cos ^2a+\sin ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
\(1+\cot ^2a=1+\frac{\cos ^2a}{\sin ^2a}=\frac{\sin ^2a+\cos ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
Ta có đpcm.
1.
$0< a< 90^0\Rightarrow `1>\sin a, \cos a>0$
Do đó:
$\sin a-\tan a=\sin a-\frac{\sin a}{\cos a}=\frac{\sin a(\cos a-1)}{\cos a}<0$
$\Rightarrow \sin a< \tan a$
(đpcm)
$\cos a-\cot a=\cos a-\frac{\cos a}{\sin a}=\frac{\cos a(\sin a-1)}{\sin a}<0$
$\Rightarrow \cos a< \cot a$ (đpcm)
a/ Có \(\sin B=\frac{AC}{BC};\sin C=\frac{AB}{BC};\cos B=\frac{AB}{BC};\cos C=\frac{AC}{BC}\)
\(\Rightarrow\frac{\sin B-\sin C}{\cos B-\cos C}=\frac{AC-AB}{AB-AC}\)
Nếu AC<AB=> AC-AB<0 =>...<0
Nếu AC>AB=>AB-AC<0=>...<0
b/ làm tg tự câu a
c/ \(\cot B=\frac{AB}{AC};\cot C=\frac{AC}{AB}\)
\(\Rightarrow\cot B+\cot C=\frac{AB^2+AC^2}{AB.AC}\)
Quy đồng lên có: \(AB^2+AC^2>2AB.AC\) (luôn đúng vs AB\(\ne\) AC)
Vậy đẳng thức đc CM
a)\(\sin\alpha=\dfrac{9}{15}\Rightarrow\sin^2\alpha=\dfrac{81}{225}\)
Có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\dfrac{81}{225}=\dfrac{144}{225}\)
\(\Rightarrow\cos\alpha=\sqrt{\dfrac{144}{225}}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{9}{15}:\dfrac{4}{5}=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}=\dfrac{4}{5}:\dfrac{9}{15}=\dfrac{4}{3}\)
b)\(\cos\alpha=\dfrac{3}{5}\Rightarrow\cos^2\alpha=\dfrac{9}{25}\)
Có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)
\(\Rightarrow\sin\alpha=\dfrac{4}{5}\)
\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)
a: cot a=1/1,5=2/3
b: \(sina=\sqrt{1-\dfrac{3}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{1}{2}:\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{3}\)
\(cota=\dfrac{3}{\sqrt{3}}=\sqrt{3}\)