Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi số tiền mỗi trường sẽ ủng hộ là x, y ( triệu đồng )
Theo bài ra dự tính tổng số tiền ủng hộ là 8 triệu đồng .
\(\Rightarrow x+y=8\left(I\right)\)
Mà sau khi thực hiện số tiền ủng hộ có thay đổi nên tổng tiền ủng hộ là 9,1 triệu động .
\(\Rightarrow1,1x+1,2y=9,1\left(II\right)\)
- Giair phương trình ( I ) và ( II ) ta được : \(\left\{{}\begin{matrix}x=5\\y=3\end{matrix}\right.\) ( Triệu đồng )
Vậy ...
Mình xin làm câu Vi-et thôi.
2/ \(2x^2-2mx-m-5=0\left(1\right)\)
a/ ( a = 2; b = -2m; c = -m - 5 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.2.\left(-m-5\right)\)
\(=4m^2+8m+40\)
\(=\left(2m\right)^2+8m+2^2-2^2+40\)
\(=\left(2m+2\right)^2+36>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=\frac{2m}{2}=m\\P=x_1x_2=\frac{c}{a}=\frac{-m-5}{2}\end{cases}}\)
Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=15\)
\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2-2x_1x_2=15\)
\(\Leftrightarrow S^2-2P-4x_1x_2=15\)
\(\Leftrightarrow m^2-2.\frac{-m-5}{2}-4S=15\)
\(\Leftrightarrow m^2+\frac{2m+10}{2}-4m=15\)
Quy đồng bỏ mẫu, mẫu chung là 2:
\(\Leftrightarrow2m^2+2m+10-8m=15\)
\(\Leftrightarrow2m^2-6m+10=15\)
\(\Leftrightarrow2\left(m^2-3m+5\right)=15\)
\(\Leftrightarrow m^2-3m+5=\frac{15}{2}\)
\(\Leftrightarrow m^2-3m+5-\frac{15}{2}=0\)
\(\Leftrightarrow m^2-3m-\frac{5}{2}=0\)
\(\Leftrightarrow m^2-3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2-\frac{19}{4}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\frac{19}{4}\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\left(\frac{\sqrt{19}}{2}\right)^2\)
\(\Leftrightarrow m-\frac{3}{2}=\frac{\sqrt{19}}{2}\Leftrightarrow m=\frac{3+\sqrt{19}}{2}\)
Vậy:..
Cho hàm số y=f(x)=x3-3x2+1
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
Xét tam giác OKB có:
OI2=IK x IB
mà IB=IC (OI là đường trung trực)
=>OI2=IK x IC (1)
Xét tam giác OAB có:
BI2=OI x IA (2)
Xét tam giác vuông OBI có:
OB2=BI2+OI2=R (3)
Từ (1) và (2) và (3) =>IK x IC+OI x IA=OB2=R2 (CMX)