Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)
Suy ra \(x=15k;y=20k;z=24k\)
Thay vào,ta có:
\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
2.
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(1\right)\)
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)
Ta có :
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}:\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\cdot\dfrac{2}{1}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{c}\)
\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}=\dfrac{2}{c}\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{2}{c}\)
\(\Rightarrow2ab=\left(a+b\right)c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Áp dụng tính chất 2 phân số bằng nhau:\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc\) , ta có:
\(=>\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)
\(=>ac-a^2+bc-ab=ac+a^2-bc-ab\)
\(=>-a^2+bc=a^2-bc\)
\(=>bc-a^2-\left(a^2-bc\right)=0\)
\(=>2bc-2a^2=0=>2\left(bc-a^2\right)=0=>bc-a^2=0\)
\(=>bc=a^2\)
CHÚC BẠN HỌC TỐT........
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
\(\Rightarrow a=b=c=2003\)
2)
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Rightarrow a\left(c-a\right)+b\left(c-a\right)=c\left(a-b\right)+a\left(a-b\right)\)
\(\Rightarrow ac-a^2+bc-ab=ac-bc+a^2-ab\)
\(\Rightarrow bc=a^2\)
Điều trên đúng
Cám ơn bạn nhiều nha !!!!!!
Thanks very much