K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

bai EZ​ quabanh

25 tháng 12 2021

????

:))))

 

16 tháng 5 2022

a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)

16 tháng 5 2022

b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)

5 tháng 10 2020

Bài 1 :

a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)

b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)

\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)

\(=-1+\left(-2\right)=-1-2=-3\)

c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)

Bài 2 :

a)  \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)

=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)

=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)

b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)

=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)

=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)

c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>

30 tháng 9

bài1  

a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\) 

=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\) 

=\(\dfrac{1}{12}+\dfrac{9}{12}\) 

=\(\dfrac{10}{12}=\dfrac{5}{6}\)

30 tháng 9

bài 1 

b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\) 

\(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\) 

\(-\dfrac{6}{5}+\dfrac{3}{10}\) 

=\(-\dfrac{12}{10}+\dfrac{3}{10}\) 

=\(-\dfrac{9}{10}\) 

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

22 tháng 9 2023

a) 3/13 - 3/2 + 10/13

= (3/13 + 10/13) - 3/2

= 1 - 3/2

= -1/2

b) 4/7 - (-2/7) - 7/3

= 4/7 + 2/7 - 7/3

= 6/7 - 7/3

= -31/21

c) 2/3 - (-1/6) + 5/4

= 2/3 + 1/6 + 5/4

= 8/12 + 2/12 + 15/12

= 25/12

21 tháng 9 2023

a, 3/13 - 3/2 + 10/13

= 3/13 + 10/13

= 1 - 3/2 = -1/2

b,4/7 - (-2/7) - 7/3

= 4/7 + 2/7 - 7/3

= 6/7 - 7/3

= 18/21 - 14/21

= 4/21

c, 2/3 - -1/6 +5/4 

= 2/3 + 1/16 +5/4

= 128/192 + 12/192 + 240/192

= 380/192

= 95/4 

không hiểu chỗ nào hỏi tui

 

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

Dạng 1: RÚT GỌNBài 1: Thực hiện phép tính:a,12 5 6 2 10 3 5 22 6 3 9 32 .3 4 .9 5 .7 25 .49(2 .3) (125.7) 5 .14 b,18 7 3 15 1510 15 14 132 .18 .3 3 .22 .6 3 .15.4c,6 5 94 12 114 .9 6 .1208 .3 6Bài 2: Thực hiện phép tính:a,15 9 20 929 16 29 65.4 .9 4.3 .85.2 .9 7.2 .27b,4 2 23 3 22 .5 .11 .72 .5 .7 .11c,11 12 11 1112 11 11 115 .7 5 .75 .7 9.5 .7Bài 3: Thực hiện phép tính:a,22 7 1514 211.3 .3 9(2.3 )b,10 10 10 99 102 .3 2 .32...
Đọc tiếp

Dạng 1: RÚT GỌN
Bài 1: Thực hiện phép tính:
a,
12 5 6 2 10 3 5 2
2 6 3 9 3
2 .3 4 .9 5 .7 25 .49
(2 .3) (125.7) 5 .14
 


b,

18 7 3 15 15
10 15 14 13
2 .18 .3 3 .2
2 .6 3 .15.4

c,
6 5 9
4 12 11
4 .9 6 .120
8 .3 6

Bài 2: Thực hiện phép tính:
a,
15 9 20 9
29 16 29 6
5.4 .9 4.3 .8
5.2 .9 7.2 .27

b,
4 2 2
3 3 2
2 .5 .11 .7
2 .5 .7 .11

c,

11 12 11 11
12 11 11 11
5 .7 5 .7
5 .7 9.5 .7

Bài 3: Thực hiện phép tính:
a,
22 7 15
14 2
11.3 .3 9
(2.3 )

b,

10 10 10 9
9 10
2 .3 2 .3
2 .3

c,

5 4 9
10 8 8
4 .9 2.6
2 .3 6 .20

Bài 4: Thực hiện phép tính:
a,
12 5 6 2 10 3 5 2
2 6 4 5 3 9 3
2 .3 4 .9 5 .7 25 .49
(2 .3) 8 .3 (125.7) 5 .14
 

 

b,

15 9 20 9
9 19 29 6
5.4 .9 4.3 .8
5.2 .6 7.2 .27

c,

5 4 9
10 8 8
4 .9 2.6
2 .3 6 .20

Bài 5: Thực hiện phép tính:
a,
12 7 15 8
24 14 12 5
15.4 .9 4.3 .8
19.2 .3 6.4 .27

b,

15 22 16 4
9 7 5 23
3 .2 6 .4
2.9 .8 7.27 .2

c,
3 10 9
6 12 11
16 .3 120.6
4 .3 6

Bài 6: Thực hiện phép tính :
a,    
12 5 6 2 10 3 5 2
6 3 2 4 5 9 3
2 .3 4 .9 5 .7 25 .49
2 .3 8 .3 125.7 5 .14
A

 
 
 

b,

15 9 20 9
10 12 29 6
5.4 .9 4.3 .8
5.2 .6 7.2 .27

Bài 7: Thực hiện phép tính:
a,  
12 5 6 2
6
2 4 5
2 .3 4 .9
2 .3 8 .3
A




b,

5 4 9
10 8 8
4 .9 2.6
2 .3 6 .20
B


Bài 8: Thực hiện phép tính :
a,
10 10
9 4
3 .11 3 .5
3 .2

b,

10 10
8
2 .13 2 .65
2 .104

Bài 9: Thực hiện phép tính:
a,
30 7 13 27
27 7 10 27
2 .5 2 .5
2 .5 2 .5


b,    

 
6 6 5 3
10 5 3
3 .15 9 . 15
3 .5 .2
  

Bài 10: Thực hiện phép tính:
a,
2 11 2 2 6 2
12 4 2 3
5 .6 .16 6 .12 .15
2.6 .10 81 .960

b,  

 
9
19 3 4
10 9 10
2 .27 .5 15. 4 .9
6 .2 12
A

 

 

2
Bài 11: Thực hiện phép tính:
a,  
 
5
15 4 10 20
6 6 3 15
0,8 2 .9 45 .5
:
0,4 6 .8 75
 
  
   

b,  
15 14 22 21
10 16 15
5 3.7 19.7 2.5 9.5

:
25 7 3.7
A
 

Bài 12: Tính giá trị của biểu thức:

7 3 3
7
7 7
2 9 3 .5 :
5 4 16
2 .5 512

A
     
             

Bài 13: Tính biểu thức:

3 3 1 0,6 1 0,875 0,7 14 7 13 6 2 1,21 :
25 6 6 1 1,2 0,25 0,2

7 13 3

B

    

  

   

(Chưa làm)

Bài 14: Tính biêu thức:      

3 6
3
2
1 1 1 3 .12 84 51. 37 51. 137
3 4 7 27.4

A
  
            

Bài 15: Thực hiện phép tính:
a, 1024: 5 5 (17.2 15.2 )  b, 3 0 3 5 .2 (23 4 ) : 2   c, 5 4 2 (5.3 17.3 ) : 6 
Bài 16: Thực hiện phép tính:
a, 2 2 2 2 2 (10 11 12 ) : (13 14 )    b, 3 4 3 2 2 (2 .9 9 .45) : (9 .10 9 )  
Bài 17: Thực hiện phép tính:
a, 14 14 16 4   (3 .69 3 .12) : 3 7 : 2     b, 4 4 12 12 24 : 3 32 :16 
Bài 18: Thực hiện phép tính :
a,  
2010 10 8 4 2010 2010 2010 7 : 7 3.2 2 : 2   b,    
100 101 102 97 98

0