Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta có: MB=MC = 1/2 BC = 1/2 * 24 = 12(CM)
Tam giác ABC vuông tại A, theo định lí Py-ta-go, ta có:
AM2 = AB2 - MB2 = 152 - 122 = 81
AM = \(\sqrt{81}\)= 9(cm)
b) G là trọng tâm cùa tam giác ABC
Suy ra AG = 2/3 * AM = 2/3 * 9 = 6(cm)
A B C M G
a. áp dụng dl Pytago ta có
BC^2= AB^2+AC^2
BC^2= 8^2+15^2=64+225=289(cm)
=> BC= căn 289=17cm
b. vì trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền nên
AM= 1/2BC= BC/2=8.5cm
AG= 2/3 AM = 2/3 . 8.5 xấp xỉ 5.7
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
tự vẽ hình nhé
a) ta có: tam giác ABC cân tại A
,mà MB=MC
=> AM LÀ đg phân giác
=> am VUÔNG GÓC VỚI BC
b) AM là đg phân giác (cmt)
=> AM =1/2 BC= 9:2=4.5(cm)
c) ta có tam giác AMB là tam giac vuông (AM vuông góc với BC )
mà N là trg điểm của AB
=>MN là đg phân giác
=> MN=1/2AB=7.5:2=3.75(cm)
d)ta có: AB=AC=7.5(cm)
=>AB vuông với AC
mà MN vuông với AB
=>MN//AC
TK DÙM MINK NHOA
A B C D E G M
A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
\(\Rightarrow AG=2GD\)
MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )
\(\Rightarrow GM=2GD\)
NÊN D LÀ TRUNG ĐIỂM CỦA GM
\(\Rightarrow GD=DM\left(ĐPCM\right)\)
XÉT \(\Delta BDM\)VÀ\(\Delta CDG\)CÓ
\(BD=CD\left(GT\right)\)
\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)
\(GD=DM\left(CMT\right)\)
=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)
B)
VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
\(\Rightarrow CG=\frac{2}{3}CE\)
THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)
MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)
=>\(BM=CG=4\left(CM\right)\)
C)
TA CÓ
\(AB< DB+DA\)
\(AC< DC+DA\)
CỘnG VẾ THEO VẾ
\(\Rightarrow AB+AC< 2AD+DB+DC\)
GIẢI TIẾP LÀ RA
A B C M G
a) Xét tam giác ABC vuông tại A, áp dụng định lý Pytago ta có :
\(BC^2=AB^2+AC^2=5^2+12^2=25+144=169=13^2\)
Mà BC>0 nên BC = 13 cm.
Vậy BC = 13 cm.
b) AM là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{1}{2}BC=\frac{13}{2}=6,5\)(cm)
Vậy AM = 6,5 cm.
c) G là trọng tâm tam giác nên ta có \(AG=\frac{2}{3}AM=\frac{2}{3}.6,5=\frac{13}{3}\)(cm)
Vậy AG = 13/3 cm.
2:
a: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
BM=CM=16/2=8cm
=>AM=6cm
b: AG=2/3*6=4cm