Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả thiết => \(\frac{M\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{N\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{32x-19}{\left(x+1\right)\left(x-2\right)}\)
=> M(x-2) + N(x+1) = 32x - 19
<=> M.x - 2.M + N.x + N = 32.x -19
=> (M+ N).x + (N - 2.M) = 32.x - 19
=> M+ N = 32 và -2M + N = -19
=> M = 17, N = 15
vậy M.N = 17. 15 =...
a, \(\left(y-2\right)\left(y+2\right)\left(y^2+4\right)-\left(y+3\right)\left(y-3\right)\left(y^2+9\right)\)
\(=\left(y^2-4\right)\left(y^2+4\right)-\left(y^2-9\right)\left(y^2+9\right)\)
\(=y^4-16-y^4+81=65\)
b, \(2\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^3-y^3\right)\left(x^3+y^3\right)-2\left(x^6-y^6\right)\)
\(=2\left(x^6-y^6\right)-2\left(x^6-y^6\right)=0\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)
\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)
\(\left(x-2y+1\right)^2=x^2+4y^2+1-4xy-4y+2x\)
\(\left(3x+y-2\right)^2=9x^2+y^2+4+6xy-12x-4y\)
a) \(\left(a^2-4\right)\left(a^2+4\right)\)
\(=a^4-8\)
c) \(\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\)
=\(\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4-b^4\)
d) \(\left(a-b+c\right)\left(a+b+c\right)\)
=\(a^2-\left(b+c\right)^2\)
e) \(\left(x+2-y\right)\left(x-2-y\right)\)
=\(x-\left(2-y\right)\)
mik lm tắt có gì sai cho mik xin lỗi
( a2 - 4 )( a2 + 4 ) = a4 - 16
( x3 - 3y )( x3 + 3y ) = x6 - 9y2
( a - b )( a + b )( a2 + b2 )( a4 + b4 ) = ( a2 - b2 )( a2 + b2 )( a4 + b4 ) = ( a4 - b4 )( a4 + b4 ) = a8 - b8
( a - b + c )( a + b + c ) = ( a + c )2 - b2 = a2 - b2 + c2 + 2ac
( x + 2 - y )( x - 2 - y ) = ( x - y )2 - 22 = x2 - 2xy + y2 - 4
Bài 1:
a,\(3x\left(5x^2-2x-1\right)\)
\(=3x.5x^2-3x.2x-3x=15x^3-6x^2-3x\)
b,\(\left(x^2+2xy-3\right)\left(-xy\right)\)
\(=x^2.\left(-xy\right)+2xy.\left(-xy\right)-3.\left(-xy\right)\)
\(=-x^3y-2x^2y^2+3xy\)
c,\(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)
\(=\dfrac{1}{2}x^2y.\left(2x^3\right)-\dfrac{1}{2}x^2y.\dfrac{2}{5}xy^2-\dfrac{1}{2}x^2y\)
\(=x^5y-\dfrac{1}{5}x^3y^3-\dfrac{1}{2}x^2y\)
Chúc bạn học tốt!!!
Bài 1:
a) \(3x\left(5x^2-2x-1\right)\\ =15x^3-6x^2-3x\)
b) \(\left(x^2+2xy-3\right)\left(-xy\right)\\ =-x^3y-2x^2y+3xy\)
c) \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\\ =x^5y-\dfrac{1}{5}x^3y^3-\dfrac{1}{2}x^2y\)
a) \(n=a^2+b^2\)
\(2n=2a^2+2b^2=a^2+b^2-2ab+a^2+b^2+2ab=\left(a-b\right)^2+\left(a+b\right)^2\)
b) \(2n\)là số chẵn nên hai số chính phương có tổng là \(2n\)cùng tính chẵn lẻ.
\(2n=\left(a-b\right)^2+\left(a+b\right)^2\)
\(\Rightarrow n^2=a^2+b^2\)
c) \(n^2=\left(a^2+b^2\right)^2=a^4+2a^2b^2+b^4=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(a)\)
\(1-5x\le x^2-4\)
\(\Leftrightarrow x^2-4+5x-1\ge0\)
\(\Leftrightarrow x^2+5x-5\ge0\)
\(\Leftrightarrow x\le\frac{\left(-5-\sqrt{45}\right)}{2}\)hoặc \(x\ge\frac{\left(-5+\sqrt{45}\right)}{2}\)
\(c)\)
\(3x^2-6x+7\)
\(=3\left(x^2-2x+1\right)+4\)
\(=3\left(x-1\right)^2+4>0\)(Vô lý)
=> Bất phương trình vô nghiệm
\(d)\)
\(\frac{4-x}{x-9}>2\)
\(\Leftrightarrow\frac{\left(4-x\right)}{\left(x-9\right)}-2>0\)
\(\Leftrightarrow\frac{\left(-3x+22\right)}{x-9}>0\)
\(\Leftrightarrow\frac{22}{3}< x< 9\)
Bổ sung b)
2/7x-4 >1
<=> 2/( 7x - 4) - 1 > 0
<=> [ 2 - ( 7x -4)]/( 7x - 4) > 0
<=> ( 6-7x)/( 7x -4) > 0
<=> ( 7x - 6).( 7x - 4) < 0
<=> 4/7 < x < 6/7
Trả lời:
a, x2 + 4y2 + 4xy - 16
= ( x2 + 4xy + 4y2 ) - 16
= [ x2 + 2.x.2y + ( 2y )2 ] - 16
= ( x + 2y )2 - 42
= ( x + 2y - 4 ) ( x + 2y + 4 )
b, 5x2 - 10xy + 5y2
= 5 ( x2 - 2xy + y2 )
= 5 ( x - y )2