Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-9=0
x2=9
=>x+3 =0 hoặc x-3=0
=>x=-3 hoặc x=3
vậy nghiệm của đa thức x2-9 là 3;-3
x2+3x=0
x.(x+3)=0
=>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
vậy nghiệm của đa thức x2+3x là 0;-3
x3-9x=0
x(x2-9)=0
=>x=0 hoặc x2-9=0
=>x=0 hoặc x2=9
=>x=0 hoặc x=3 hoặc x=-3
vậy nghiệm của đa thức x3-9x là:0;3;-3
Bài 1:1)
\(f\left(x\right)=x+7x^2-6x^3+3x^4+2x^2+6x-2x^4+1\\ =7x+9x^2+x^4-6x^3+1\)
Sắp xếp: \(x^4-6x^3+9x^2+7x+1\)
2) bậc đa thức : 4
hệ số tự do : 1
hệ số cao nhất : 9
3) \(f\left(-1\right)=x^4-6x^3+9x^2+7x+1\\ =\left(-1\right)^4-6.\left(-1\right)^3+9.\left(-1\right)^2+7.\left(-1\right)+1\\ =1-\left(-6\right)+9+\left(-7\right)+1=10\)
mấy câu kia tương tự
Bài 2:
1. \(P=A+B\\
=5x^2-3xy+7y^2+6x^2-8xy+9y^2\\
=11x^2-11xy+16y^2\)
\(Q=A-B\\ =5x^2-3xy+7y^2-\left(6x^2-8xy+9y^2\right)\\ =5x^2-3xy+7y^2-6x^2+8xy-9y^2\\ =-x^2+5xy-2y^2\)
2. \(M=P-Q\\
=11x^2-11xy+16y^2-\left(-x^2+5xy-2y^2\right)\\
=11x^2-11xy+16y^2+x^2-5xy+2y^2\\
=12x^2-16xy+18y^2
\)
Thay x=-1 và y=-2 có:
\(12x^2-16xy+18y^2\\ =12.\left(-1\right)^2-16.\left(-1\right).\left(-2\right)+18.\left(-2\right)^2=52\)
3.\(T=M-N\\
=12x^2-16xy+18y^2-3x^2+16xy-14y^2\\
=9x^2+4y^2\)
Ta có : 9x2 >0 và 4y2 >0 => T>0
=> T luôn nhận giá trị dương với mọi giá trị x, y
a) P(x)=3x2 - 5x3 +x + 2x3 - x - 4 + 3x3 + x4 + 7
= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7
= 3x2 + 0 + 0 + x4 + 3
= 3x2 + x4 + 3
b) Vì x2 > hoặc = 0 vs mọi x thuộc R
=)) 3x2 > hoặc = 3 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > hoặc = x4 + 6 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > 0
Vậy đa thức 3x2 + x4 + 3 vô nghiệm
2 thieu đề
Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x2 > 0 hoặc 3x2 = 0 vì x2 có thể = 0 được. VÌ vậy nếu bạn bảo 3x2 >/= 3 là sai
1.P(x)= -Q(x)
=>3x3+x2-3x-1=3x3+x2+x+15
=>4x= -16 => x= -4
2.Ta có:P(1)=0 và Q(1) khác 0
=>điều phải chứng minh