Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số cây ba lớp 7A, 7B, 7C trồng được là x, y, z
Theo đề bài ta có :
\(x:y=3:4\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)(1)
\(y:z=5:7\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)
Từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)(3)
Lại có 2 lần số cây 7A với 3 lần số cây 7B nhiều hơn số cây lớp 7C là 186
=> 2x + 3y - z = 186 (4)
Từ (3) và (4) => \(\hept{\begin{cases}\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\\2x+3y-z=186\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\frac{2x}{30}=3\Rightarrow2x=90\Rightarrow x=45\)
\(\frac{3y}{60}=3\Rightarrow3y=180\Rightarrow y=60\)
\(\frac{z}{28}=3\Rightarrow z=84\)
Vậy số cây ba lớp 7A, 7B, 7C trồng được lần lượt là 45 ; 60 ; 84 cây

Gọi số cây của 3 lớp lần lượt là a,b,c
Ta có:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6};a+b+c=150\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{105}{15}=7\)
\(\Rightarrow\left\{{}\begin{matrix}a=28\\b=35\\c=42\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}7A:...\\7B:...\\7C:...\end{matrix}\right.\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{b}{4}=\dfrac{c}{6}=\dfrac{b+c}{4+6}=\dfrac{30}{10}=3\)
Do đó: b=12; c=18
=>a=30

Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a(cây),b(cây),c(cây)
(Điều kiện: \(a,b,c\in Z^+\))
Số cây của ba lớp trồng được lần lượt tỉ lệ với 4;5;6 nên \(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}\)
Lớp 7C trồng được nhiều hơn lớp 7A 60 cây nên c-a=60
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{c-a}{6-4}=\dfrac{60}{2}=30\)
=>\(a=30\cdot4=120;b=30\cdot5=150;c=30\cdot6=180\)
Vậy: Số cây lớp 7A,7B,7C trồng được lần lượt là 120 cây, 150 cây, 180 cây

Gọi số cây trồng được của 3 lớp 7A ; 7B ; 7C lần lượt là x,y,z (x,y,z \(\inℕ^∗\))
Theo bài ra ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(2x-y=8\)
=> \(\frac{2x}{4}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{2x}{4}=\frac{y}{3}=\frac{z}{5}=\frac{2x-y}{2.2-3}=\frac{8}{1}=8\)
=> x = 8 . 2 =16
y = 8 . 3 = 24
z = 8 . 5 = 40
Vậy............................................
Học tốt

Gọi số cây ba lớp 7A, 7B, 7C là x,y,z(cây, x,y,z0)
Theo đề bài, ta có:
Tổng số cây 3 lớp trồng được là 60 cây
x+y+z=60
Vì số cây 3 lớp 7A,7B,7C lần lượt tỉ lệ với 4;5;6\(\Rightarrow\)\(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{x+y+z}{4+5+6}\)=\(\dfrac{60}{15}\)=4
\(\Rightarrow\)x=4.4=16
y=5.4=20
z=6.4=24
Vậy Lớp 7A trồng đc 16 cây;
Lớp 7B trồng đc 20 cây;
Lớp 7C trồng đc 24 cây
Lời giải:
Gọi số cây trồng được của 3 lớp lần lượt là $a,b,c$ (cây)
Theo bài ra ta có:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{6}$ và $c-a=60$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{60}{2}=30$
$\Rightarrow a=4.30=120; b=5.30=150; c=6.30=180$ (cây)