Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a,b,c(vở) lần lượt là số quyển vở mà cô giáo thưởng cho ba bạn Bình, An và Tâm(Điều kiện: a,b,c>0 và a,b,c∈N+)
Vì tổng số quyển vở cô giáo thưởng là 31 quyển nên a+b+c=31(quyển)
Vì số quyển vở tỉ lệ nghịch với số điểm kém nên
7a=3b=c
hay \(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{1}=\dfrac{a+b+c}{\dfrac{1}{7}+\dfrac{1}{3}+1}=\dfrac{31}{\dfrac{31}{21}}=31\cdot\dfrac{21}{31}=21\)
Do đó:
\(\left\{{}\begin{matrix}7a=21\\3b=21\\c=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\left(nhận\right)\\b=7\left(nhận\right)\\c=21\left(nhận\right)\end{matrix}\right.\)
Vậy: Số quyển vở cô thưởng cho ba bạn Bình, An và Tâm lần lượt là 3 quyển, 7 quyển và 21 quyển
Gọi số quyển vở mà An, bình, Cường nhận lần lượt là a,b,c
Theo đề, ta có: a/3=b/4=c/5 và a+b+c=48
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{48}{12}=4\)
=>a=12; b=16; c=20
Gọi x (quyển), y (quyển), z (quyển) lần lượt là số quyển vở của An, Bình, Cường nhận được (x, y, z \(\in\) N*)
Do số quyển vở của An, Bình, Cường tỉ lệ thuận với 3; 4; 5 nên:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Do tổng số quyển vở là 48 nên:
\(x+y+z=48\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{48}{12}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=4.3=12\)
\(\dfrac{y}{4}=4\Rightarrow y=4.4=16\)
\(\dfrac{z}{5}=4\Rightarrow z=4.5=20\)
Vậy An nhận được 12 quyển vở
Bình nhận được 16 quyển vở
Cường nhận được 20 quyển vở