K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

hello everyone my name ís Sumi

14 tháng 11 2018

bài lớp mấy,khó !

19 tháng 11 2018

Nguyễn Thanh Hằng giúp mk nhé

25 tháng 11 2018

Bạn @Tenten giúp mk với

12 tháng 12 2020

Gọi a,b,c(vở) lần lượt là số quyển vở mà cô giáo thưởng cho ba bạn Bình, An và Tâm(Điều kiện: a,b,c>0 và a,b,c∈N+)

Vì tổng số quyển vở cô giáo thưởng là 31 quyển nên a+b+c=31(quyển)

Vì số quyển vở tỉ lệ nghịch với số điểm kém nên

7a=3b=c

hay \(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{1}=\dfrac{a+b+c}{\dfrac{1}{7}+\dfrac{1}{3}+1}=\dfrac{31}{\dfrac{31}{21}}=31\cdot\dfrac{21}{31}=21\)

Do đó: 

\(\left\{{}\begin{matrix}7a=21\\3b=21\\c=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\left(nhận\right)\\b=7\left(nhận\right)\\c=21\left(nhận\right)\end{matrix}\right.\)

Vậy: Số quyển vở cô thưởng cho ba bạn Bình, An và Tâm lần lượt là 3 quyển, 7 quyển và 21 quyển

Gọi số quyển vở mà An, bình, Cường nhận lần lượt là a,b,c

Theo đề, ta có: a/3=b/4=c/5 và a+b+c=48

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{48}{12}=4\)

=>a=12; b=16; c=20

14 tháng 2 2023

Gọi x (quyển), y (quyển), z (quyển) lần lượt là số quyển vở của An, Bình, Cường nhận được (x, y, z \(\in\) N*)

Do số quyển vở của An, Bình, Cường tỉ lệ thuận với 3; 4; 5 nên:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Do tổng số quyển vở là 48 nên:

\(x+y+z=48\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{48}{12}=4\)

\(\dfrac{x}{3}=4\Rightarrow x=4.3=12\)

\(\dfrac{y}{4}=4\Rightarrow y=4.4=16\)

\(\dfrac{z}{5}=4\Rightarrow z=4.5=20\)

Vậy An nhận được 12 quyển vở

Bình nhận được 16 quyển vở

Cường nhận được 20 quyển vở