Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=2x+\sqrt{1-4x+4x^2}\)
\(A=2x+\sqrt{\left(1-2x\right)^2}\)
\(A=2x+\left|1-2x\right|\)
\(A=2x+\left|2x-1\right|\)
\(A=4x-1\)
b)\(x=\frac{1}{4}\Leftrightarrow A=4.\frac{1}{4}-1\)
\(\Leftrightarrow A=-1\)
\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)
\(2\sqrt{x}-1>0\);\(4x>0\)
\(\Rightarrow x>0\)thì \(A>A^2\)
a)\(x+3+\sqrt{x^2-6x+9}\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+x-3\)
\(=2x\)
b)\(\sqrt{x^2+4x+4}-\sqrt{x^2}\)
\(=\sqrt{\left(x+2\right)^2}-x\)
\(=x+2-x\)
=2
c)\(\sqrt{\frac{x^2-2x+1}{x-1}}\)
\(=\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)
\(=\sqrt{x-1}\)
giải giúp mình bài này ới ạ mình đng cần gấp
Cho biểu thức
c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2
a)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{a-9}\)
b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)
\(\Rightarrow3\left(-2a-3\right)=a-9\)
\(\Rightarrow-6a-9=a-9\)
\(\Rightarrow-6a-a=-9+9\)
\(\Rightarrow-7a=0\left(L\right)\)
Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)
\(a,B=3-2x+\sqrt{1+4x+4x^2}\\ =3-2x+\sqrt{\left(2x+1\right)^2}\\ =3-2x+2x+1\\ =4\)
\(b,\) Thay \(x=2015\) ta có:
\(B=4\)
a, B=3-2x+\(\sqrt{4x^2+4x+1}\) =3-2x+\(\sqrt{\left(2x+1\right)^2}\) =3-2x+2x+1=4 b; Ta co B=4=4+0x thay x=2015 =>B=4+0x=4+0.2015=4 vay x=2015=>B=4
ta có B=3-2x+2x+1
=>B=4
b)với x=2015 thì B=4
\(B=3-2x+\sqrt{1+4x+4x^2}=3-2x+\sqrt{\left(2x+1\right)^2}=3-2x+\left|2x+1\right|\)
Nếu \(x\ge-\frac{1}{2}\Rightarrow B=3-2x+2x+1=4\)
Nếu \(x< -\frac{1}{2}\Rightarrow B=3-2x-2x-1=4-4x\)
b, x = 2015 tức là \(x>-\frac{1}{2}\)
Vậy với x = 2015 thì B = 4