K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

b^2=ac ;c^=bd CMR 2b^3+3c^3/2c^3+3d^3=a/d

22 tháng 2 2020

vì b2 = ac nên \(\frac{a}{b}=\frac{b}{c}\)

vì c2=bd nên \(\frac{c}{d}=\frac{b}{c}\)

suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)   (1)

suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{2b^3}{2c^3}=\frac{3c^3}{3d^3}=\frac{a^3+2b^3+3c^3}{b^3+2c^3+3d^3}\)(2)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{2b}{2c}=\frac{3c}{3d}=\frac{a+2b+3c}{b+2c+3d}\)suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+2b+3c}{b+2c+3d}\right)^3\)(3)

Từ (1), (2) và (3) suy ra điều phải chứng minh

20 tháng 12 2016

Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có:

\(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{bk+ck-dk}{b+c-d}\right)^3=\left[\frac{k\left(b+c-d\right)}{b+c-d}\right]^3=k^3\) (1)

\(\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^2=\left(\frac{2bk+3ck-4dk}{2b+3c-4d}\right)^3=\left[\frac{k\left(2b+3c-4d\right)}{2b+3c-4d}\right]^3=k^3\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^3\) ( đpcm )

5 tháng 2 2022

đặt a/b =c/d =k 

=> a=bm , c=dm 

=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)

=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)

Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d 

câu 2 tương tự nha

3 tháng 4 2023

bạn khôi đặt là k mà lại khi m