Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1\dfrac{7}{20}:2,7+2,7:1,35+\left(0,4:2\dfrac{1}{2}\right).\left(4,2-1\dfrac{3}{40}\right)\)
\(=\dfrac{27}{20}:\dfrac{27}{10}+\dfrac{27}{10}:\dfrac{27}{10}+\left(\dfrac{2}{5}:\dfrac{5}{2}\right).\left(\dfrac{21}{5}-\dfrac{43}{40}\right)\)
\(=1+1+\dfrac{4}{25}.\dfrac{25}{8}\)
\(=2+\dfrac{1}{2}\)
\(=2\dfrac{1}{2}\)
b) \(\left(6\dfrac{3}{5}-3\dfrac{3}{14}\right).5\dfrac{5}{6}:\left(21-1.25\right):2,5\)
\(=\left(\dfrac{33}{5}-\dfrac{45}{14}\right).\dfrac{35}{6}:\left(-4\right):2,5\)
\(=\left(\dfrac{462}{60}-\dfrac{225}{60}\right).\dfrac{35}{6}.\dfrac{1}{-4}:\dfrac{5}{2}\)
\(=\dfrac{237}{60}.\dfrac{35}{6}.\dfrac{1}{-4}.\dfrac{2}{5}\)
\(=\dfrac{3.79.7.5.2}{5.14.3.2.\left(-4\right).5}\)
\(=\dfrac{79.7}{14.\left(-4\right).5}=\dfrac{553}{-280}\) (số xấu :v)
\((2,7.x-1\frac{1}{2})\div\frac{2}{7}=\frac{-21}{4}\) \(3\frac{1}{3}.x+16\frac{3}{4}=-13.25\)
\(2,7.x-1\frac{1}{2}=-\frac{21}{4}\cdot\frac{2}{7}\) \(\frac{10}{3}.x+\frac{67}{4}=-13.25\)
\(2,7.x-\frac{3}{2}=-\frac{3}{2}\) \(\frac{10}{3}.x+\frac{67}{4}=-\frac{53}{4}\)
\(2,7.x=-\frac{3}{2}+\frac{3}{2}\) \(\frac{10}{3}.x=-\frac{53}{4}-\frac{67}{4}\)
\(2,7.x=0\) \(\frac{10}{3}.x=-30\)
\(x=0:2,7\) \(x=-30:\frac{10}{3}\)
\(x=0\) \(x=-9\)
Vậy x=0 Vậy x= -9
\(\left(4.5-2.x\right):\frac{3}{4}=1\frac{1}{3}\) \(1.5+1\frac{1}{4}.x=\frac{2}{3}\)
\(\left(4.5-2.x\right)=1\frac{1}{3}\cdot\frac{3}{4}\) \(1\frac{1}{4}.x=\frac{2}{3}-1.5\)
\(4.5-2.x=\frac{4}{3}\cdot\frac{3}{4}\) \(\frac{5}{4}.x=\frac{2}{3}-\frac{3}{2}\)
\(4.5-2.x=1\) \(\frac{5}{4}.x=-\frac{5}{6}\)
\(2.x=4.5-1\) \(x=-\frac{5}{6}:\frac{5}{4}\)
\(2.x=3.5\) \(x=-\frac{2}{3}\)
\(x=3.5:2\)
\(x=1.75\) Vậy \(x=-\frac{2}{3}\)
Vậy x=1.75
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{49}{50}\)
\(=\frac{1}{50}\)
Chỗ nào không hiểu nhắn tin cho tớ nha!
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{49}{50}\)
\(=\frac{1}{50}\)
a) \(1\dfrac{7}{20}:2,7+2,7:1,35\)
\(=1,35:2,7+2,7:1,35\)
\(=0,5+2\)
\(=2,5\)
b) \(3\dfrac{1}{2}-\left(0,4:2\dfrac{1}{2}\right).\left(4,2-1\dfrac{3}{4}\right)\)
\(=\dfrac{7}{2}-\left(0,4:\dfrac{5}{2}\right).\left(4,2-\dfrac{7}{4}\right)\)
\(=\dfrac{7}{2}-\dfrac{4}{25}.\dfrac{49}{20}\)
\(=\dfrac{7}{2}-\dfrac{49}{125}\)
\(=\dfrac{777}{250}\)
\(a)\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)\(=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{3}{10}.\frac{-4}{3}}=\frac{5}{24}\)
Hok tốt
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
Câu b: Đặt \(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{2004}-1\right)\)
Ta có: \(\frac{1}{2}-1=\left(-\frac{1}{2}\right);\frac{1}{3}-1=\left(-\frac{2}{3}\right);...;\frac{1}{2004}-1=\left(-\frac{2003}{2004}\right)\)
\(\Rightarrow B=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{2003}{2004}\right)\)
Vì B là 2003 thừa số âm nhân lại với nhau nên B là số âm
\(\Rightarrow B=-\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\right)=-\frac{1}{2004}\)
Câu a: Đặt \(A=1+2^4+2^8;B=1+2+2^2+...+2^{11}\)
\(\Rightarrow16A=2^4+2^8+2^{12}\) \(\Rightarrow15A=2^{12}-1\) \(\Rightarrow A=\frac{2^{12}-1}{15}\) \(\left(1\right)\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{12}\) \(\Rightarrow B=2^{12}-1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow A:B=\frac{2^{12}-1}{15}:\left(2^{12}-1\right)=\frac{1}{15}\)
\(B=1x\frac{7}{20}:2,7+2,7:1,35+\left(0,4+2\frac{1}{2}\right)x\left(4,2-1\frac{3}{10}\right)\)
\(B=\frac{7}{20}:2,7+2+2,9x2,9\)
\(B=\frac{7}{54}+2+8,41\)
\(B=10,53962963\)