B1:Cho phân số A=n-9/n mũ 2 +5 (n thuộc Z)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

\(A=\frac{n-9}{n^2+5}\)

a, Vì \(n^2\ge0\)=> \(n^2+5>0\)Nên phân số luôn xác định.

b, Với n=0 => \(A=\frac{-9}{5}\)

Với n=3 => \(A=\frac{3-9}{3^2+5}=\frac{-6}{14}=\frac{-3}{7}\)

Với n=-3 => \(A=\frac{-3-9}{\left(-3\right)^2+5}=\frac{-12}{14}=\frac{-6}{7}\)

4 tháng 3 2018

ko biet

6 tháng 8 2016

a) Do n2 luôn > hoặc = 0 khác -3 => n2 + 3 khác 0

=> A luôn tồn tại

b) bn chỉ việc thay n rùi tính A là ra

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

a. Ta thấy $n^2+5\geq 5> 0$ với mọi $n\in\mathbb{Z}$

$\Rightarrow n^2+5\neq 0$ với mọi $n\in\mathbb{Z}$

$\Rightarrow$ phân số $M$ luôn tồn tại.

b.

Với $n=0$ thì $M=\frac{0-3}{0^2+5}=\frac{-3}{5}$

Với $n=2$ thì $M=\frac{2-3}{2^2+5}=\frac{-1}{9}$

Với $n=-5$ thì $M=\frac{-5-3}{(-5)^2+5}=\frac{-4}{15}$

27 tháng 1 2016

a) Để phân số B không tồn tại thì (n-2)(n+1) khác 0

Với (n-2)(n+1)>0

      Vì n+1>n-2

=>n+1<0 hoặc n-2>0

=>n<-1 hoặc n>2 (1)

Với (n-2)(n+1)<0

      Vì n+1>n-2

=>n+1>0 hoặc n-2>0

=>n>-1 hoặc n>2 (2)

          =>n thuộc Z ,n khác -1,n khác 2

câu b thì tương tự câu a

câu c thì chắc ai cũng có thể làm được

          mình làm nhanh nhất , tick cho mình nhé!

NM
14 tháng 1 2022

ta có mẫu của M là : \(n^2+5>0\forall n\) thế nên M luôn tồn tại

b. ta có bảng sau

n

0

2-5
M\(-\frac{3}{5}\)\(-\frac{1}{9}\)\(-\frac{8}{30}\)
22 tháng 3 2020

a, - Để biểu thức B luôn tồn tại thì :

\(n^2+5\ne0\)

\(n^2+5>0\forall n\)

=> \(n^2+5\ne0\) ( luôn đúng )

Vậy phân số B luôn tồn tại .

b, Thay n = 0 vào phân số B ta được :

\(B=\frac{0-2}{0^2+5}=-\frac{2}{5}\)

Thay n = 0 vào phân số B ta được :
\(B=\frac{2-2}{2^2+5}=0\)

Thay n = -5 vào phân số B ta được :
\(B=\frac{-5-2}{\left(-5\right)^2+5}=-\frac{7}{30}\)

a) Ta có: \(n^2\ge0\forall n\)

\(\Rightarrow n^2+5\ge5>0\forall x\)

⇒Với ∀n thì \(n^2+5\ne0\)

\(B=\frac{n-2}{n^2+5}\) luôn xác định được giá trị(đpcm)

b) Thay n=0 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được

\(\frac{0-2}{0^2+5}=\frac{-2}{5}\)

Thay n=2 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được

\(B=\frac{2-2}{2^2+5}=\frac{0}{9}=0\)

Thay n=-5 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được

\(\frac{-5-2}{\left(-5\right)^2+5}=\frac{-7}{30}\)

Vậy: \(-\frac{2}{5};0;\frac{-7}{30}\) lần lượt là ba giá trị của phân số \(B=\frac{n-2}{n^2+5}\) tại lần lượt n=0; n=2 và n=-5

Đặt ƯCLN(5n+6;4n+5)=d(\(d\inℕ^∗\))

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\4n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}4.\left(5n+6\right)⋮d\\5.\left(4n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+24⋮d\\20n+25⋮d\end{cases}}}\)

\(\Rightarrow20n+25-\left(20n+24\right)⋮d\)

\(\Leftrightarrow20n+25-20n-24⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Rightarrow d=1\)(Vì \(d\inℕ^∗\))

\(\RightarrowƯCLN\left(5n+6;4n+5\right)=1\)

\(\Rightarrow\frac{5n+6}{4n+5}\)là phân số tối giản với mọi số nguyên n

Vậy.......

Gọi \(Gọi ( 5 n + 6 ; 4 n + 5 ) = d\)

\(⇒ d | 5 ( 4 n + 5 ) − 4 ( 5 n + 6 ) = 20 n + 25 − 20 n − 24 = 1\)

\(⇒ ( 5 n + 6 ; 4 n + 5 ) = 1\)

\(⇒ A\) tối giản với mọi số nguyên n