Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của dãy số là:
(11-0):1+1=12( số )
= 1 + 3 + 3^2 + ... + 3^11
=( 1 + 3 + 3^2 ) + ....+ ( 3^9+ 3^10 + 3 ^11 )
=( 1 + 3 + 3^2 ) + ....+ 3^9( 1 + 3 + 3^2 )
= 13+......+ 3^9.13
=13(1+...+3^9)
Vì 13 chia hết cho13=>13(1+..+3^9) chia hết cho 13
Vậy ...
SSH : (177148 + 1)+2 +1 = 177151
Tổng : (177148 - 1 )+177151 : 2 = 2657225
CÔNG THỨC : SSH : Lấy số cuối cộng số đầu trong ngoặc rồi cộng khoảng cách giữa 2 số đầu , ví dụ : giữa 1 và 3 là hơn kém nhau 2 đơn vị tiếp theo cộng 1 .
Tổng : Lấy số cuối trừ số đầu trong ngoặc nhân cho kết quả của SSH rồi chia 2 .
\(E=1+3+3^2+3^3+....+3^{11}\)
\(E=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(E=\left(1+3+9\right)+\left(3^3.1+3^3.3+3^3.3^2\right)+....+\left(3^9.1+3^9.3+3^9.3^2\right)\)
\(E=13+3^3.13+...+3^9.13\)
\(E=13.\left(1+3^3+...+3^9\right)\)
A= 1+3+3^2+3^3+...+3^11
=(1+3)+(3^2+3^3)+...+(3^10+3^11)
=4+3^2(4)+...+3^10(4)
=4(1+3^2+...+3^10)
a) A= (1+3)+(3^2+3^3)+.....+ ( 3^10 + 3^11)
A= 1. ( 1+ 3) + 3^2. ( 1+ 3) +.....+ 3^10. (1+3)
A= 1.4+3^2.4+...+3^10.4
A= 4. ( 1+ 3^2+...+ 3^10) chia hết cho 4
Vậy A chia hết cho 4
b) B= (2^4)^5 + 2^15
B= 2^ 20+ 2^15
B= 2^15.2^5+2^15
B= 2^15. (2^5 +1)
B= 2^15.33 chia hết cho 33
Vậy B chia hết cho 33
c) C= 5+5^2+5^3+....+5^8 chia hết cho 5 (1)
C= 5+ 5^2 +5^3+.....+5^8
C= (5+5^2)+(5^3+5^4)+...+(5^7+5^8)
C= 5. (1+5) + 5^3. (1+5) +....+ 5^7.(1+5)
C= 5.6+5^3.6+...+5^7.6 chia hết cho 6
mà 5 và 6 là hai số nguyên tố cùng nhau
suy ra C chia hết cho 30
Vậy C chia hết cho 30
d) 5.9+11.9+9.20= 9. (5+11+20) chia hết cho 9
Vậy D chia hết cho 9
e) E= (1+3+ 3^2) + (3^3+3^4+3^5) +....+ (3^117+3^118+3^119)
E= 1.(1+3+3^2) + 3^3.(1+3+3^2) +....+ 3^117.(1+3+3^2)
E= 1.13+3^3.13+...+ 3^117.13
E= 13. ( 1+3^3+...+3^117) chia hết cho 13
Vậy E chia hết cho 13
f) Ta có: 10^28= 100.....000 ( có 28 chữ số 0)
thay 100...00 vào 10^28 ta được:
1000....00+8= 1000...008 chia hết cho 3 và 9 vì tổng các chữ số của 100...008 bằng 9
mà 3 và 9 là hai số nguyên tố cùng nhau
suy ra F chia hết cho 27
Vậy F chia hết cho 27
g) G= (2^3)^8 + 2^20
G= 2^24 + 2^20
G= 2^20 . 2^4 + 2^20
G= 2^20. (2^4+1)
G= 2^20. 17 chia hết cho 17
Vậy G chia hết cho 17
Nếu các bạn thầy hay thì (k) đúng cho mình nhé! thank you very much
a, mình nghĩ là \(16^5+2^{15}\)
ta có : \(16^5=2^{20}\)
=>\(16^5+2^{15}=2^{20}+2^{15}\)
=\(2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
mà \(2^{15}.33⋮33\)
\(=>16^5+2^{15}⋮33\)
Vì 3 lũy thừa liên tiếp từ lũy thừa đầu tiên cộng lại chia hết cho 3
Mà 60 chia hết cho 3 nên tổng này chia hết cho 3
Đặt A = 31 + 32 + 33 +...+ 360 ( có 60 số hạng)
A = (31 + 32 + 33) + (34 + 35 + 36) + ...+ (358 + 359 + 360) ( có 20 nhóm số hạng)
A = 3.(1+3+32) + 34.(1+3+32) + ...+ 358.(1+3+32)
A = 3.13 + 34.13 + ...+ 358.13
A = 13.(3+34+...+358) chia hết cho 13
Bài giải
Ta có :
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
Bài giải
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
a) Vì mỗi số đều chia hết cho 3 => A chia hết cho 3
b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)
A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)
A= 1.39+3.39+....+312.39
=> Vì 39 chia hết cho cho 3
=> ĐPCM
a) bạn hỏi tính chất à
b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)
A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)
A= 1.39+3.39+....+312.39
=> Vì 39 chia hết cho cho 3
=> ĐPCM
B = 1 + 3 + 32 +......+ 311
= (1+3)+(32+33)+.....+(310+311)
= 1.(1+3)+32(1+3)+.....+310(1+3)
= (1+3)(1+32+.....+310)
= 4(1+32+......+310) chia hết cho 4
Vậy B chia hết cho 4
câu b của bạn thiếu số 3 ở giữa số 1 và 32 nghen