Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2005*2006
= 1- 1/2 + 1/2 - 1/3 + 1/3 -1 /4 + ...+1/2005 - 1/2006
= 1 - 1/2006
= 2005/2006
a) 2005*2007-1 b)2003*2004+2005*10+1994
2004+2005*2006 2005*2004-2003*2004
c) ( 5+3/8+18+1/2-7-5/24 )
c) 5 + \(\frac{3}{8}\)+18 + \(\frac{1}{2}\) - 7 - \(\frac{5}{24}\)
=\(\frac{43}{8}\)+ \(\frac{35}{2}\) +\(\frac{163}{24}\)
=\(\frac{129}{24}\)+ \(\frac{420}{24}\)+\(\frac{163}{24}\)
= \(\frac{58}{51}\)
k nhé
a)\(=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times...\times\left(\dfrac{2005}{2005}+\dfrac{1}{2005}\right)\)
\(=\dfrac{3}{2}\times\dfrac{4}{3}\times...\times\dfrac{2006}{2005}=\dfrac{2006}{2}=1003\)
b)\(=\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\times\dfrac{1}{2}=\dfrac{3}{3}\times\dfrac{1}{2}=\dfrac{1}{2}\)
ko trả lời thì thôi ko cần bạn trả lời nha Miku
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2004\cdot2005}+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Rightarrow A=1-\frac{1}{2006}\)
\(\Rightarrow A=\frac{2005}{2006}\)
2005 x 2007 - \(\frac{1}{2004}\)+ 2005 x 2006
= 4024035 - \(\frac{1}{2004}\)+ 4022030
= 4024035 + 4022030
= 8046065
\(\frac{2005.2007-1}{2004+2005.2006}=\frac{2005.2006+2005-1}{2004+2005.2006}=\frac{2005.2006+2004}{2004+2005.2006}=1\)
K CHO MIK NHA!
Ta có : B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\)
=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
Khi đó 3B - B = \(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)
=> 2B = \(1-\frac{1}{3^{2005}}\)
=> B = \(\frac{1}{2}-\frac{1}{3^{2005}.2}< \frac{1}{2}\left(\text{ĐPCM}\right)\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+........+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=1-\frac{1}{3^{2005}}\)
\(\Rightarrow2B=1-\frac{1}{3^{2005}}\)\(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}\)
Vì \(1-\frac{1}{3^{2005}}< 1\)\(\Rightarrow\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}\)
hay \(B< \frac{1}{2}\)( đpcm )