Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3A = 3. ( 30 + 31 + 32 +...+ 311)
3A = 31 + 32 +33 +....+ 312
3A - A = 31 +32+33 +...+312 - 30 - 31-32- ...- 311
2A = 312 -1
A = (312 -1) : 2
b) A = ( 30 + 31 + 32 33) + .... + ( 38 + 39 + 310 + 311)
A = 40 + ... + 38 . ( 30 + 31 +32 +33)
A = 40 + ... + 38 .40
A = 40 . ( 1 + ...+ 38)
Vì 40 chia hết cho 40
=> 40. ( 1 + ...+38) chia hết cho 40
Vậy A chia hết cho 40
a) 144 + 77 + 143 = 264 \(⋮\)11
b) 132 - 55 = 77 \(⋮\)11
c) 143 + 99 + 12 = 254 \(⋮̸\)11
d) 243 - 89 =154 \(⋮\)11
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}.\)
\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\cdot\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
x = 1
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
Bài 1 :
a, ab + ba = (a*10 + b) + (b*10 + a)
= a*(10+1) + b*(1+10)
= a*11 + b*11 chia hết cho 11
b, abc - cba = (a*100 + b*10 + c) - (c*100 + b*10 + a)
= a*99 + 0b + c*(-99) chia hết cho 99
n + 5 chia hết cho n+1
(n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1
Nên 4 chia hết cho n+1
Suy ra, n+1 thuộc 1; 2; 4
Rồi sau đó, bạn tìm ra n nha.
Chúc bạn học tốt
Theo nguyên tắc Đi-rích-lê thì ta có:Trong 12 số tự nhiên bất kì bao giờ cũng có 2 số có cùng số dư khi chia cho 11.Gọi 2 số đó là M và N thì:
M = 11m+n ; N = 11p+ n
Suy ra M - N = (11m+n) - (11p+n) = 11m-11p=11(m-p) chia hết cho 11
Vậy: Trong 12 số tự nhiên bất kì luôn tìm được 2 số có hiệu chia hết cho 11
B=110
MK cần lời giải