Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2=\left(\frac{-3}{5}\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=\frac{-3}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=\frac{-4}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{-2}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\y=\frac{-2}{5}\end{array}\right.\)
2) Ta có:
29 + 299
= 29.(1 + 290)
= 512.(1 + 280.210)
= 512.[1 + (220)4.1024]
= 512.[1 + (...26)4.2014)]
= 512.[1 + (...26).1024]
= 512.[1 + (...24)]
= 512.(...25)
= 128.4.(...25)
= 128.(...00)
= (...00) \(⋮100\)
Chứng tỏ \(2^9+2^{99}⋮100\)
Bài 1:
\(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow2x+\frac{1}{5}=\pm\frac{3}{5}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=-\frac{4}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=-\frac{2}{5}\end{array}\right.\)
Vậy ........
Câu 1
4 p/s cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau
d/s la x= - 329
Câu 2
NHân vs 7 thành 7S rồi rút gọn là đc
Câu 1 :
a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
\(S=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+....+\left(2.10\right)^2\)
\(\Rightarrow S=2^2.1^2+2^2.2^2+....+2^2.10^2\)
\(\Rightarrow S=2^2\left(1^2+2^3+3^2+.....+10^2\right)\)
Áp dụng giả thiết từ đề
\(\Rightarrow S=2^2.385\)
\(\Rightarrow S=4.384=1540\)
\(S=2^2+4^2+6^2+...+20^2\)
\(=1^2.4+2^2.4+3^2.4+...+10^2.4\)
\(=4.\left(1^2+2^2+3^2+...+10^2\right)\)
\(=4.385=1540\)