K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

giải câu 3

23 tháng 9 2016

1) \(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)

\(\Rightarrow\left(2x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2=\left(\frac{-3}{5}\right)^2\)

\(\Rightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=\frac{-3}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=\frac{-4}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{-2}{5}\end{array}\right.\)

Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\y=\frac{-2}{5}\end{array}\right.\)

2) Ta có:

29 + 299

= 29.(1 + 290)

 

= 512.(1 + 280.210)

= 512.[1 + (220)4.1024]

= 512.[1 + (...26)4.2014)]

= 512.[1 + (...26).1024]

= 512.[1 + (...24)]

= 512.(...25)

= 128.4.(...25)

= 128.(...00)

= (...00) \(⋮100\)

Chứng tỏ \(2^9+2^{99}⋮100\)

23 tháng 9 2016

Bài 1:

\(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow2x+\frac{1}{5}=\pm\frac{3}{5}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=-\frac{4}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=-\frac{2}{5}\end{array}\right.\)

Vậy ........

 

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

5 tháng 8 2016

\(S=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+....+\left(2.10\right)^2\)

\(\Rightarrow S=2^2.1^2+2^2.2^2+....+2^2.10^2\)

\(\Rightarrow S=2^2\left(1^2+2^3+3^2+.....+10^2\right)\)

Áp dụng giả thiết từ đề

\(\Rightarrow S=2^2.385\)

\(\Rightarrow S=4.384=1540\)

5 tháng 8 2016

\(S=2^2+4^2+6^2+...+20^2\)

    \(=1^2.4+2^2.4+3^2.4+...+10^2.4\)

    \(=4.\left(1^2+2^2+3^2+...+10^2\right)\)

    \(=4.385=1540\)