Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x-1}+\frac{5}{x+2}=\frac{13}{x^2+x-2}.\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{5\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{13}{x^2+x-2}\)
\(\Leftrightarrow\frac{2x+4}{x^2+x-2}+\frac{5x-5}{x^2+x-2}=\frac{13}{x^2+x-2}\)
\(\Leftrightarrow\frac{7x-1}{x^2+x-2}=\frac{13}{x^2+x-2}\)
\(\Leftrightarrow7x-1=13\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)
\(a,\)Mình làm theo kiểu lược đồ
Nhẩm nghiệm của đa thức trên ta đc : 2
Có lược đồ sau :(dòng trên ghi các hệ số)
1 | -2 | -6 | 12 | |
2 | 1 | 0 | -6 | 0 |
Ta phân tích đc thành :\(\left(x-2\right)\left(x^2-6\right)\)
\(c,x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
\(d,3x^2+5x+2\)
\(=3x^2+3x+2x+2\)
\(=3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+2\right)\)
\(e,x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)+3xy-1\right]\)
\(x^3-2x^2-6x+12\)
\(=x^2.\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-6\right)\)
\(x^4-7x^2+12\)
\(=\left[\left(x^2\right)^2-2.3,5x+3,5^2\right]-0,25\)
\(=\left(x^2-3,5\right)^2-0,5^2\)
\(=\left(x^2-3,5-0,5\right)\left(x^2-3,5+0,5\right)\)
\(=\left(x^2-4\right)\left(x^2-3\right)\)
Câu c tương tự câu b
a) ĐKXĐ: \(\left\{{}\begin{matrix}3x\left(x+2\right)\ne0\\x+1\ne0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x\ne0\\x+2\ne0\\x+1\ne0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x\ne0\\x\ne-2\\x\ne-1\end{matrix}\right.\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-x+1\ne0\\2x\ne0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2\ne0\\x\ne0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x-1\ne0\\x\ne0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ne1\\x\ne0\end{matrix}\right.\)
h) Ta có: \(\left\{{}\begin{matrix}\left|x-7\right|=\left|7-x\right|\ge7-x\\\left|x+5\right|\ge x+5\end{matrix}\right.\)
\(\Rightarrow\left|7-x\right|+\left|x+5\right|\ge\left(7-x\right)+\left(x+5\right)\)
\(\Rightarrow\left|x-7\right|+\left|x+5\right|\ge12\)
\(\Rightarrow H\ge12\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}7-x\ge0\\x+5\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le7\\x\ge-5\end{matrix}\right.\)
\(\Leftrightarrow-5\le x\le7\)
Vậy, MinH = 12 \(\Leftrightarrow-5\le x\le7\)
a) Ta có: \(A=2x^2-8x+10\)
\(=2\left(x^2-4x+5\right)\)
\(=2\left(x^2-4x+2^2+1\right)\)
\(2\left[\left(x-2\right)^2+1\right]\)
Ta lại có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow2\left[\left(x-2\right)^2+1\right]\ge2\)
\(\Rightarrow A\ge2\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy MinA = 2 \(\Leftrightarrow x=2\)
a .
a. =x3 -x2-4x2+4x+4x-4=(x-1)(x2-4x+4)=(x-1)(x-2)2
b. =x3+x2-6x2-6x+9x+9=(x+1)(x-3)2
c. =x3+x2+7x2+7x+10x+10=(x+1)(x+2)(X+5)
d. =x4+x3+x3+x2+x+1=x3(x+1)+x2(x+1)+x+1=(x+1)(x3+x2+x)=x(x+1)(x2+x+1).Ok
Nếu bạn có thể giải xin hãy giải giúp mình nhé !
1) ADME là h.b.h (vì có 2 cặp cạnh đối song song)
2) Vì ADME là hình chữ nhật nên O là trung điểm 2 đường chéo AM và DE.
Xét tam giác AHM vuông tại H, đường trung tuyến HO, khi đó HO = AO = OM
Vậy tam giác AHO cân ở O
3)
a, Tam giác ABC vuông tại A nên ˆDAE=900DAE^=900
Mà ADME là h.b.h nên tứ giác ADME là hình chữ nhật
b, Vì tứ giác AEMD là hình chữ nhật nên ED=AM
Để DE có độ dài nhỏ nhất thì AM có độ dài nhỏ nhất hay M là chân đường vuông góc hạ từ A xuống BC
bạn à, lộn môn rồi, đây là môn tiếng anh ko phải toán