Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 5)² = (3 + 2x)²
(x - 5)² - (3 + 2x)² = 0
[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0
(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0
(-x - 8)(3x - 2) = 0
-x - 8 = 0 hoặc 3x - 2 = 0
*) -x - 8 = 0
-x = 8
x = -8
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = -8; x = 2/3
--------------------
27x³ - 54x² + 36x = 9
27x³ - 54x² + 36x - 9 = 0
27x³ - 27x² - 27x² + 27x + 9x - 9 = 0
(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0
27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0
(x - 1)(27x² - 27x + 9) = 0
x - 1 = 0 hoặc 27x² - 27x + 9 = 0
*) x - 1 = 0
x = 1
*) 27x² - 27x + 9 = 0
Ta có:
27x² - 27x + 9
= 27(x² - x + 1/3)
= 27(x² - 2.x.1/2 + 1/4 + 1/12)
= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R
⇒ 27x² - 27x + 9 = 0 (vô lí)
Vậy x = 1
A = x² + y²
= x² - 2xy + y² + 2xy
= (x - y)² + 2xy
= 4² + 2.1
= 16 + 2
= 18
B = x³ - y³
= (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + xy + 2xy)
= (x - y)[(x - y)² + 3xy]
= 4.(4² + 3.1)
= 4.(16 + 3)
= 4.19
= 76
C = x⁴ + y⁴
= (x²)² + (y²)²
= (x²)² + 2x²y² + (y²)² - 2x²y²
= (x² + y²)² - 2x²y²
= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²
= [(x - y)² + 2x²y²]² - 2x²y²
= (4² + 2.1²)² - 2.1²
= (16 + 2)² - 2
= 18² - 2
= 324 - 2
= 322
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
a) \(=6a-3+15-5a=a+12\)
b) \(=25x-12x+4+35-14x=-x+39\)
d) \(=2ab+8a^2-b^2-4ab+2ab-6a^2=2a^2-b^2\)
e) \(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4=-x^5+2x+1\)
f) \(=6y^3-3y^2+y-y+y^2-y^3-y^2+y=5y^3-3y^2+y\)
a) 3( 2a -1) +5( 3-a)
= 3. 2a -3.1 +5. 3- 5.a
= 6a -3+ 15-5a
=(6a -5a )+ (-3+ 15)
b) 25x - 4(3x - 1) +7(5 - 2x)
= 25x -4.3x + 4.1 + 7.5 - 7.2
=25x - 12x + 4 +35 - 14x
= (25x-12x-14x)+(4+35)
= -x=39
c) -12x3 -x1-2x-18x2
= -36x-x-2x-36x
= -75x
d) (2a-b)(b+4a)+2a(b-3a)
= 2ab+2a4a-bb-b4a+2ab-2a3b
= 2ab+8a2-b2-4ab+2ab-6a2
=(2ab-4ab+2ab)+(8a2-6a2)-b2
= 2a2-b2
e) (x+1)(2+x-x2+x3-x4)
= (x+1)(2-2x)
= x2-x2x+1.2-1.2x
=(2x-2x)-2x2+2
= -2x2+2
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(A=x^3+8-x^3+2\)
\(A=10\)
b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(B=x^3-1-\left(x^3+1\right)\)
\(B=x^3-1-x^3-1\)
\(B=-2\)
c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)
\(C=8x^3-y^3+y^3-27x^3\)
\(C=-19x^3\)
a)
\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)
b)
\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)
c)
\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)
Bài 1:
\(a,\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(x^2-xy+1\right)=\left(x^3y^2+\dfrac{1}{2}x^2y^3\right)\left(x^2-xy+1\right)=x^5y^2-x^4y^3+x^3y^2+\dfrac{1}{2}x^3y^3-\dfrac{1}{2}x^3y^4+\dfrac{1}{2}x^2y^3\)
\(b,\left(\dfrac{1}{2}x-1\right)\left(2x-3\right)=x^2-\dfrac{3}{2}x-2x+3=x^2-\dfrac{7}{2}x+3\)\(c,\left(x-7\right)\left(x-5\right)=x^2-5x-7x+35=x^2-12x+35\)\(f,\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x-1\right)=\left(x^2-\dfrac{1}{4}\right)\left(4x-1\right)=4x^3-x^2-x+\dfrac{1}{4}\)Bài 2 ,
\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\Rightarrowđpcm\)\(b,\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+y^3x+x^3y-x^2y^2-xy^3-y^4=x^4-y^4\)