\(\sqrt{81}\)- \(\sqrt{\frac{9}{4}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

a) \(A=\sqrt{81}.\sqrt{\frac{9}{4}}+2\sqrt{16}-3=\sqrt{9^2}.\sqrt{\left(\frac{3}{2}\right)^2}+2\sqrt{4^2}-3=9.\frac{3}{2}+2.4-3=\frac{37}{2}\)

b) \(B=\sqrt{9-2\sqrt{14}}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}=\sqrt{7}-\sqrt{2}\)

c) Không rút gọn được.

Bài 2 : Mình hướng dẫn thôi nhé ^^

a) \(M=x^2-10x+30=\left(x^2-10x+25\right)+5=\left(x-5\right)^2+5\ge5\)

b) \(N=4x^2-12x+1=\left[\left(2x\right)^2-12x+9\right]-8=\left(2x-3\right)^2-8\ge-8\)

c) \(P=x^2-x-1=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}-1=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

d) \(Q=16x^2-8x+3=\left[\left(4x\right)^2-8x+1\right]+2=\left(4x-1\right)^2+2\ge2\)

e) \(H=\frac{1}{9}x^2+3x-1=\left[\left(\frac{x}{3}\right)^2+2.\frac{x}{3}.\frac{9}{2}+\frac{81}{4}\right]-\frac{81}{4}-1=\left(\frac{x}{3}+\frac{9}{2}\right)^2-\frac{85}{4}\ge-\frac{85}{4}\)

18 tháng 7 2016

1) \(A=\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=3-2\sqrt{2}\)

\(B=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}-1+2-\sqrt{3}=1\)

\(C=\sqrt{63}-\sqrt{28}-\sqrt{7}=3\sqrt{7}-2\sqrt{7}-\sqrt{7}=0\)

\(D=\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}=\frac{4}{2}=2\)

\(M=\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}.\frac{\sqrt{5}-1}{\sqrt{5}\left(\sqrt{5}-1\right)}=\frac{2}{4}=\frac{1}{2}\)

18 tháng 7 2016

bạn khó bài nào mik lm cho chứ nhiều quá

Bài 1: Tìm x để căn thức sau có nghĩaa)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)Bài 2: Tínha) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)Bài 3: Rút gọna)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c)...
Đọc tiếp

Bài 1: Tìm x để căn thức sau có nghĩa

a)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)

Bài 2: Tính

a) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)

Bài 3: Rút gọn

a)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c) 2\(\sqrt{7}\)+\(\sqrt{\left(2-\sqrt{7}\right)^2}\) d) 3\(\sqrt{\left(x-5\right)^2}\) với x < 5

e)\(\sqrt{\frac{9+4\sqrt{5}}{\left(\sqrt{5+2}\right)^2}}\)     f)\(\sqrt{\frac{\sqrt{9-4\sqrt{5}}-\sqrt{5}}{2}}\)+ 5

Bài 4: Tìm x biết:

a)\(\sqrt{4x^2}\)= 8     b) \(\sqrt{1+4x+4x^2}\)\(=\)\(7\)    c)\(\sqrt{x^4}\)\(=\)\(3\)

Bài 5: Phân tích đa thức thành nhân tử

a) x2 -2      b) x2\(-\)2\(\sqrt{3}\)\(\times\)x \(+\)3

Bài 6: Chứng minh a\(\in\)z , b\(\in\)z

A=\(\sqrt{A-2\sqrt{5}}\)\(-\)\(\sqrt{6+2\sqrt{5}}\)   B=\(\frac{\sqrt{3-2\sqrt{2}}}{17-12\sqrt{2}}\)\(-\)\(\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

1
5 tháng 8 2017

giúp mik vs thứ 2 mik nộp rr huhu

14 tháng 7 2019

1) \(x\ge\frac{1}{6}\) 

2.\(x\le0\)

3.\(4-5x\ge0\Leftrightarrow x\le\frac{4}{5}\) 

4.mọi x

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

19 tháng 9 2019

4.a)\(x-2\sqrt{x}+3\)

\(=x-2\sqrt{x}+1+2\)

\(=\left(\sqrt{x}-1\right)^2+2\)

\(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)

\(\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

b)Ta có:

\(x-4\sqrt{y}+13\ge0\)

\(\Leftrightarrow x-4\sqrt{y}\ge-13\)

Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)

Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)

c)Ta có:

\(2x-4\sqrt{y}+6\ge0\)

\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)

\(\Leftrightarrow x-2\sqrt{y}\ge-3\)

Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)

Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)

d)Ta có:

\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)

\(\left(x+1\right)^2\ge0,\forall x\)

\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)

\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)

Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)

19 tháng 9 2019

zài zậy

Bài 1: Tính a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\) b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\) c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\) e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\) Bài 2: Giải pt: a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\) c)...
Đọc tiếp

Bài 1: Tính

a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)

b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)

Bài 2: Giải pt:

a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

d) \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

e) \(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)

f) \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

g) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)

Bài 3: Cho biểu thức:

P= \(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

a) Rút gon P

b) Tìm x để P đạt GTNN, tìm GTNN đó.

c) Tìm x \(\in\) Z để P \(\in\) Z

@Nguyễn Văn Đạt@Akai Haruma Help me please~~~~ Giải thích cẩn thân hộ với.

3
21 tháng 7 2019
https://i.imgur.com/FpJWAoR.jpg

Tag nhầm người rồi anh ơi !! Em mới lớp 7 không biết mấy cái này