K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

B1 : 

Cách 1 :

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC  ( gt )

NM là cạnh chung

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)

Cách 2 :

Do NB = NC => tam giác NBC cân tại N => \(\widehat{NBM}=\widehat{NCM}\)

Xét \(\Delta NMB\)và \(\Delta NMC\)có :

NB = NC ( gt )

\(\widehat{NBM}=\widehat{NCM}\)( CMT )

MB = MC ( do M là trung điểm của BC )

nên \(\Delta NMB=\Delta NMC\left(c.g.c\right)\)

Cách còn lại tự làm nhá

B2 :

Cách 1 :

\(\Delta ABC\)có AB = AC => \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)

AE là tia p/g của \(\widehat{BAC}\) => \(\widehat{BAE}=\widehat{CAE}\)

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

AC = AB ( gt )

\(\widehat{BAE}=\widehat{CAE}\) ( CMT )

AE là cạnh chung

nên \(\Delta ABE=\Delta ACE\)\(\left(c.g.c\right)\)

Cách 2 :

Xét \(\Delta ABE\)và \(\Delta ACE\)có :

\(\widehat{BAE}=\widehat{CAE}\)( AE là tia p/g của BAC )

AB = AC ( gt )

\(\widehat{B}=\widehat{C}\)( do tam giác ABC cân tại A )

nên \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)

1 tháng 12 2017

có AB=AC suy ra tam giác ABC cân

mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC

xét 2 tam giác vuông ABE và ACE co\(\hept{\begin{cases}AB=AC\\AElàcanhchung\end{cases}}\)

suy ra 2 tam giác bằng nhau

2 tháng 11 2015

Có : NB = NC

=> tam giác NBC cân tại N

Có : NM vừa là đường trung tuyến vừa là đường cao

=> NM vuông góc với BC

Xét tam giác NMB và tam giác NMC có:

NM = NC

Cạnh NM chung

Góc NMB = NMC = 900

=> tám giác NMB = NMC (cạnh huyền cạnh góc vuông) (đpcm)

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)

28 tháng 6 2020

a.Xét tam giác AMH và tam giác NMB có 

          MA = MN [ gt ]

         góc AMH = góc NMB [ đối đỉnh ]

         HM = BM [ gt ]

Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]

\(\Rightarrow\)góc AHM = góc NBM 

mà bài cho góc AHM = 90độ

\(\Rightarrow\)góc NBM = 90độ

Vậy NB vuông góc với BC 

b.Theo câu a ; tam giác AMH = tam giác NMB 

\(\Rightarrow\)AH = NB [ cạnh tương ứng ]

Mặt khác ; Xét tam giác AHB vuông tại H có 

AB lớn hơn AH 

\(\Rightarrow\)AB lớn hơn NB 

21 tháng 12 2019

a) Xét ΔABE và ΔADE có:

AE: chung

BAE=DAE(AE: pg BAC) 

AB=AD(gt) 

=>ΔABE=ΔADE(c.g.c) 

=>đpcm

b) Từ cm(a) 

=>EB=ED(2 cạnh tương ứng) (*)

=>AEB=AED

Mà AEB+AED=180o

=>2AEB=180o

=>AEB=90o

=>AE\(\perp\) BD (**)

Từ (*) và (**)

=>AE là trung trực BD(đpcm) 

6 tháng 2 2017

xet tm giac AMB VA TAM GIAC NMC CO

AM=MN

CM=MB

M CHUNG

=>TAM GIÁC AMB=TAM GIÁC NM(CGC)

B,XÉT TAM GIÁC AMC VÀ TAM GIÁC NMB CÓ

MC=MB

AM=MN

M CHUG

=> TÂM GIACC AMC= TAM GIÁC NMB (CGC)

6 tháng 2 2017

Còn câu c và d thì sao =-=