Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)
Để A=0 thì x+1=0
hay x=-1
b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)
Để B=0 thi (x-2)(x+2)=0
=>x=2 hoặc x=-2
Ta có \(A=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(=>A=x^3z-x^3y^2+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(=>A=\left(x^3z-xyz\right)+\left(x^2y^2z^2-x^3y^2\right)-\left(y^3z^2-y^3x\right)-\left(z^3x^2-z^3y\right)\)
\(=>A=x^2y^2\left(z^2-x\right)+xz\left(x^2-y\right)-y^3\left(z^2-x\right)-z^3\left(x^2-y\right)\)(1)
Thay \(x^2-y=a , z^2-x=c\) Vào (1) ta có \(A=cx^2y^2+axz-cy^3-az^3\)
\(=>A=cy^2\left(x^2-y\right)-az\left(z^2-x\right)\)(2)
Thay \(x^2-y=a , z^2-x=c\) vào (2) ta có \(A=acy^2-acz=ac\left(y^2-z\right)\)(3)
Thay \(y^2-z=b\) vào ta có \(A=abc\)
Vậy giá trị của biểu thức A ko phụ thuộc vào biến x,y,z .
a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)
Bạn tự tách hđt nhé! Gõ mỏi tay :v~
\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
⇔ \(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
⇔ \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)
Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
⇒ \(x=y=z\)
j lắm thế :)))
Bài 2 : ~ bài 1 ngán quá =)))
a, Có
\(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)
b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
Trả lời :
Tham khảo link này : https://olm.vn/hoi-dap/detail/6401290031.html
- Hok tốt !
^_^
\(P=\left(x^2-y\right)\left(y^2-z^2\right)\left(z^2-x\right)=abc\)
Ta có: \(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(=x^3\left(z-y^2\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(=x^3\left(z-y^2\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)-\left(x^2z^3-x^2y^2z^2\right)\)
\(=x^3\left(z-y^2\right)+xy\left(y^2-z\right)-yz^2\left(y^2-z\right)-x^2z^2\left(z-y^2\right)\)
\(=\left(y^2-z\right)\left(-x^3+xy-yz^2+x^2z^2\right)\)
\(=\left(y^2-z\right)\left[\left(-x^3+xy\right)-\left(yz^2-x^2z^2\right)\right]\)
\(=\left(y^2-z\right)\left[x\left(-x^2+y\right)-z^2\left(y-x^2\right)\right]\)
\(=\left(y^2-z\right)\left(x-z^2\right)\left(y-x^2\right)\)
\(=b.\left(-c\right).\left(-a\right)=abc\)
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của các biến x,y,z
B1:Ta có ;n(n+5)- (n-3) (n+2)= n2 + 5n- n2- 2n+3n+6= 6n+6= 6.(n+1)
=> 6.(n+1) chia hết cho 6 với mọi n thuộc N
Vậy;...........................
tớ ra rồi =1 hoặc 2 gì đó