Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : BH + CH = 64 + 81 = 145 (cm)
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao , ta có :
+) \(AB^2=BH.CH\)
\(\Leftrightarrow AB^2=64.145=9280\)
\(\Leftrightarrow AB=\sqrt{9280}=8\sqrt{145}\left(cm\right)\)
+) \(AC^2=BC.CH\)
\(\Leftrightarrow AC^2=81.145=11745\)
\(\Leftrightarrow AC=\sqrt{11745}=9\sqrt{145}\left(cm\right)\)
Ta có :
\(\sin B=\frac{AC}{BC}=\frac{9\sqrt{145}}{145}=\frac{9}{\sqrt{145}}\)
\(\Rightarrow\widehat{B}=48^o22'\)( cái này bấm máy ra nha )
Xét tam giác ABC có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{C}=180^o-90^o-48^o22'=41^o38'\)
Vậy .......
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
Ta có : BC = BH + CH = 64 + 81 = 145 (cm)
=> \(AB^2=HB.BC=64.145\Rightarrow AB=\sqrt{64.145}=8\sqrt{145}\left(cm\right)\)
\(AC=\sqrt{HC.BC}=\sqrt{81.145}=9\sqrt{145}\) (cm)
\(AH=\sqrt{BH.CH}=\sqrt{64.81}=72\left(cm\right)\)
Ta có \(sinB=\frac{AH}{AB}=\frac{72}{8\sqrt{145}}\Rightarrow\widehat{B}\approx48^o21'59.26''\)
\(sinC=\frac{AH}{AC}=\frac{72}{9\sqrt{145}}\Rightarrow\widehat{C}\approx41^o38'0.74''\)
Bài này mình chỉ gợi ý được ở phần góc thôi:
Ta có: Góc B + góc C = 90o
Góc HAC + góc C = 90o
=> Góc HAC = góc B
Tương tự:
Góc AHB + góc B = 90o
=> Góc AHB = góc C
(Mình chỉ gợi ý vậy thôi bạn thông cảm )
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\left(cm\right)\\AC=6\left(cm\right)\\AH=4,8\left(cm\right)\end{matrix}\right.\)
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
Ta có: AH^2=9*16=> AH=12
xét tam giac ABH vg có AB^2=AH^+BH^2=>AB=15
Xét \(\Delta ABC\)có \(AH^2=BH.CH=25.64=1600\Rightarrow AH=40\left(cm\right)\)
\(AC^2=CH.BC=64.\left(64+25\right)=5696\Rightarrow AC=8\sqrt{89}\left(cm\right)\)
\(AB^2=BH.BC=25.89=2225\Rightarrow AB=5\sqrt{89}\left(cm\right)\)
Ta có \(\sin B=\frac{AC}{BC}=\frac{8\sqrt{89}}{89}\Rightarrow\widehat{B}\approx58^0\)\(\Rightarrow\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-58^0=32^0\)