![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\left(x+y+1\right)^2+2y^2-4y+2019=\left(x+y+1\right)^2+2\left(y-1\right)^2+2017>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020
A = (4x2 + 8xy + 4y2) + (x2 + 2x + 1) + (y2 - 2y + 1) + 2018
A = 4(x + y)2 + (x + 1)2 + (y - 1)2 + 2018 \(\ge\)2018
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)<=> x = -1 và y = 1
Vậy MinA = 2018 khi x = -1 và y = 1
b) B = x2 + 2y2 + 2xy - 2x - 6y + 2019
B = (x + y)2 - 2(x + y) + 1 +(y2 - 4y + 4) + 2014
B = (x + y - 1)2 + (y - 2)2 + 2014 \(\ge\)2014
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MinB = 2014 khi x = -1 và y = 2
A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020
= ( 4x2 + 8xy + 4y2 ) + ( x2 + 2x + 1 ) + ( y2 - 2y + 1 ) + 2018
= 4( x2 + 2xy + y2 ) + ( x + 1 )2 + ( y - 1 )2 + 2018
= 4( x + y )2 + ( x + 1 )2 + ( y - 1 )2 + 2018 ≥ 2018 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
=> MinA = 2018 <=> x = -1 ; y = 1
B = x2 + 2y2 + 2xy - 2x - 6y + 2019
= ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2014
= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + ( y - 2 )2 + 2014
= [ ( x + y )2 - 2.( x + y ).1 + 12 ] + ( y - 2 )2 + 2014
= ( x + y - 1 )2 + ( y - 2 )2 + 2014 ≥ 2014 ∀ x, y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
=> MinB = 2014 <=> x = -1 ; y = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+y^2+1-2xy-2x+2y+y^2-4y+4+2014\)
\(=\left(x-y-1\right)^2+\left(y-2\right)^2+2014\ge2014\)
\(\Rightarrow A_{min}=2014\) khi \(\left\{{}\begin{matrix}y-2=0\\x-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+2y^2-2xy-2y-2x+2019\)
\(A=x^2+y^2+y^2-2xy+2y-4y-2x+2019\)
\(A=\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+y^2-4y+4+2014\)
\(A=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y-2\right)^2+2014\)
\(A=\left(x-y-1\right)^2+\left(y-2\right)^2+2014\ge2014\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2-1=0\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(H=x^2+2xy+y^2+2x+2y+x^2+4x+2019=\left(x+y\right)^2+2\left(x+y\right)+\left(x+2\right)^2+2015\)
\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2014\ge2014\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2;y=1\)
\(I=\left(1-x\right)^2+\left(-2-y\right)^2+\left(x+y\right)^2\ge\frac{\left(1-x-2-y+x+y\right)^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(1-x=-2-y=x+y\)\(\Leftrightarrow\)\(x=\frac{4}{3};y=\frac{-5}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm