Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a-b}{d-c}=\frac{3}{8}\)
\(\Rightarrow8\left(a-b\right)=3\left(d-c\right)\)
\(\Leftrightarrow8a-8b=3d-3c\)
Thay 8b = 3c
\(8a-3c=3d-3c\)
\(\Leftrightarrow8a=3d\)
\(\Leftrightarrow\frac{a}{d}=\frac{3}{8}\)
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Ta có :
\(\frac{a}{b}=\frac{5}{6}\Rightarrow\frac{a}{b}=\frac{20}{24}\Rightarrow\frac{a}{20}=\frac{b}{24}\)\(\left(1\right)\)
\(\frac{b}{c}=\frac{8}{9}\Rightarrow\frac{b}{c}=\frac{24}{27}\Rightarrow\frac{b}{24}=\frac{c}{27}\)\(\left(2\right)\)
\(\frac{c}{d}=\frac{3}{2}\Rightarrow\frac{c}{d}=\frac{27}{18}\Rightarrow\frac{c}{27}=\frac{d}{18}\)\(\left(3\right)\)
Từ ( 1 ) ; ( 2 ) ; ( 3 ) \(\Rightarrow\frac{a}{20}=\frac{b}{24}=\frac{c}{27}=\frac{d}{18}=\frac{d-c}{18-24}=\frac{54}{-6}=-9\)
\(\frac{a}{20}=-9\Rightarrow a=-9.20=-180\)
\(\frac{b}{24}=-9\Rightarrow b=-9.24=-216\)
\(\frac{c}{27}=-9\Rightarrow c=-9.27=-243\)
\(\frac{d}{18}=-9\Rightarrow d=-9.18=-162\)
\(\Rightarrow A=a+2b+3c+4d=-180+\left(-216\right).2+\left(-243\right).3+\left(-162\right).4\)
\(=-1989\)