Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N đối xứng M qua P \(\Leftrightarrow\) P là trung điểm MN
\(\Rightarrow\left\{{}\begin{matrix}x_N=2x_P-x_M=18\\y_N=2y_P-y_M=-10\end{matrix}\right.\) \(\Rightarrow N\left(18;-10\right)\)
Vậy ta thấy, nếu cửa hàng làm phần bánh loại A và phần bánh loại B thì sẽ đạt được lợi nhuận cao nhất.
Gọi , y$ lần lượt là số phần bánh loại A và loại B mà cửa hàng làm ra.
Theo đề bài, ta thấy
Để làm ra phần bánh loại A cần gam bột, gam đường và gam nhân bánh;
Để làm ra phần bánh loại B cần gam bột, gam đường và gam nhân bánh.
Lợi nhuận của cửa hàng là ( nghìn đồng).
Theo đề bài, ta có hệ bất phương trình
Biểu diễn lên hệ trục , ta có miền nghiệm là tứ giác , kể cả các cạnh của tứ giác (như hình vẽ) với , .
Ta tính lợi nhuận của cửa hàng tại tọa độ các đỉnh của miền nghiệm:
nghìn đồng; nghìn đồng
nghìn đồng; nghìn đồng
Vậy ta thấy, nếu cửa hàng làm phần bánh loại A và phần bánh loại B thì sẽ đạt được lợi nhuận cao nhất.
diện tích hình tròn (biển báo)
S = πr2 = 9π (dm2)
diện tích phần mũi tên bằng 1/9 diện tích hình tròn => diện tích phần mũi tên = π (dm2)
thiếu đề bài