K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

Ta có:

Xét số a. Ta có a2 > (a - 1)(a + 1)

Thật vậy, (a - 1)(a + 1) = a(a + 1) - (a + 1) = a2 + a - a - 1 = a2 - 1 < a2

Suy ra \(\dfrac{1}{\left(a-1\right)\left(a+1\right)}>\dfrac{1}{a^2}\)

Ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(< \dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{100}-\dfrac{1}{101}\right)\)

\(< \dfrac{3}{4}\)

Ko bt có sai chỗ nào ko....

21 tháng 2 2019

Đặng Quốc Huy nói quá r, tui học ngu toán lắm

25 tháng 4 2023

b\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4

25 tháng 4 2023

Tương tự như vậy với câu a\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2

15 tháng 4 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)

a. Gọi \(d=ƯCLN\left(12n+1,30n+2\right)\)

 \(\Rightarrow12n+1⋮d\)

      \(30n+2⋮d\)

 \(\Rightarrow5\cdot\left(12n+1\right)-2\cdot\left(30n+2\right)⋮d\)

     \(\left(60n+5\right)-\left(60n+4\right)⋮d\)

      \(60n+5-60n-4⋮d\)

     \(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản .

b.\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)

bó tay @@@

a.x-2/11.13-2/13.15-2/15.17-...-2/55.57=4/3

=>x-(2/11.13+2/13.15+2/15.17+...+2/55.57)=4/3

=>x-(1/11-1/13+1/13-1/15+...+1/55-1/57)=4/3

=>x-(1/11-1/57)=4/3

=>x-46/627=4/3

=>x=4/3+46/627=294/209