Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau viết cái đề rõ rõ ra nhs!!!
a) \(A=2+2^2+2^3+................+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
b) \(B=1+3+3^2+..................+3^{2009}\)
\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)
\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)
\(\Rightarrow2B=3^{2010}-1\)
\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)
c) \(C=4+4^2+4^3+................+4^n\)
\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)
a) 164 = (24)4 = 216
85 = (23)5 = 215
Vì 216>215 nên 164>85
b) 277=(33)7=321
910=(32)10=320
Vì 321>320 nên 277>910
c) 2300=(23)100=8100
3200=(32)100=9100
Vì 8100 < 9100 nên 2300 < 3200
a, \(9^{20}=\left(3^2\right)^{20}=3^{40}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
mà \(3^{40}>3^{39}\Leftrightarrow9^{20}=27^{13}\)
vậy \(9^{20}=27^{13}\)
920 = 340 ; 2713 = 339
Vì 40 > 39 nên 340 > 339 và 920 > 2713
b ) 31000 = 30100
21500 = 30100
Vì 100 =100 nên .....
Ta có : \(B=4+3^2+3^3+...+3^{2004}\)
\(=1+3+3^2+3^3+...+3^{2004}\)
\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{2005}\)
\(\Rightarrow3B-B=\left(3+3^2+3^3+...+3^{2005}\right)-\left(1+3+3^2+...+3^{2004}\right)\)
\(\Rightarrow2B=3^{2005}-1\)
\(\Rightarrow B=\frac{3^{2005}-1}{2}< 3^{2005}\)
Hay : \(B< C\)
Vậy : \(B< C\)
Hình như sai đề hay sao đấy bạn Nam đáng lẽ 4 thành 3
Sửa lại :
\(B=3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\)
\(3B=3.\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)
\(=3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\)
\(3B-B=\left(3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\right)-\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)
\(2B=3^{2005}-3\)
\(B=\frac{3^{2005}-3}{2}< 3^{2005}=C\)
\(\Rightarrow B< C\)